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Abstract.  In this paper, we consider the equation  3x + qy = z2 in which  q  is an odd 

prime,  x, y, z  are positive integers and  x + y = 2, 3, 4.  When  q > 3,  the cases of 

infinitely many solutions, of a unique solution and of no-solutions are determined.  The 

case   q = 3  with  particular values   x, y  is also discussed. Various  solutions for  x + y =  

2, 3, 4,  and also for  x + y > 4  are exhibited. Sroysang  [5]  raised the Open Problem  

"Let  q  be a positive odd prime number.  Now, we questions that what is the set of all 

solutions (x, y, z)  for the Diophantine equation 3x + qy = z2 where  x, y and  z are non-

negative integers."  Based on our findings, a set of all solutions for the equation does not 

exist. 
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1. Introduction 

The field of Diophantine equations is ancient, vast, and no general method exists to 

decide whether a given Diophantine equation has any solutions, or how many solutions.   

 

       The famous general equation 

px+ qy = z2 

has many forms.  The literature contains a very large number of articles on non-linear 

such individual equations involving particular primes and powers of all kinds. Among 

them are for example  [1, 3, 4, 6].   

 

       In this paper, we consider the equation 

3x + qy = z2 

in which  q is an odd prime and  x, y, z  are positive integers. 

All other values introduced are also positive integers. 

       Our main objective is to determine solutions to the equation when  q > 3  and  x + y = 

2, 3, 4.  All six possibilities are investigated.  It is shown that the equation has infinitely 

many solutions, a unique solution, and also no-solution cases.   

 

       Sroysang  [5]  investigated the equation  3x + 17y = z2  and  proved it has no solutions 

in positive integers.  He  also  raised  the  problem  as  to   what is  the  set  of  all  
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solutions (x, y, z) for the equation  3x + qy = z2.  Although a formal proof is not given 

here, the results obtained imply that the answer to his problem is negative. 

 

2.   On solutions to the equation   3x + qy = z2 

In this section, we first determine solutions to  3x + qy = z2  when  q > 3  and  x + y = 2, 3, 

4.  Several solutions are exhibited. This is done in Theorem  2.1.  Secondly, we discuss 

the case  q = 3  with particular values  x, y.  Finally, we demonstrate some solutions to the 

equation when   x + y > 4. 

 

Theorem  2.1.   Suppose  that  3x + qy = z2  where  q > 3  is prime, and  x, y, z  are positive 

integers.  If   x, y   satisfy  x + y = 2, 3, 4,  then: 

 

(a)   The equation   31 + q1 = z2   has infinitely many solutions. 

(b)   The equation   31 + q2 = z2   has no solutions. 

(c)   The equation   32 + q1 = z2     has a unique solution. 

(d)   The equation   31 + q3 = z2   has no solutions when  31 + q3  ≤  234885116. 

(e)   The equation   32 + q2 = z2   has no solutions. 

(f)   The equation   33 + q1 = z2    has infinitely many solutions. 

 

Proof: The six possible equations are considered separately, each of which is self-

contained. 

 

The case   x + y = 2. 

 

For  x + y = 2,  we have  x = y = 1.   

 

(a).   x = 1   and   y = 1. 

We have  

                                                        31 + q1 = z2.                                                                (1) 

In  (1),  z2   is  even  and  denote  z = 2T.   Since  z2 = 4T2,  therefore   q = 4N + 1   where  

N + 1 = T2  and  N = T2 – 1.  Thus,   q = 4N + 1 = 4(T2 – 1) + 1  and   

q  =  4T2 – 3                          q  prime.                                      (2) 

When  T = 3a, then q  is not prime. Therefore we have in  (2)  that T = 3a + 1, T = 3a + 2. 

 

(i)   If   T = 3a+ 1,  then  4T2 – 3 = 4(3a + 1)2 – 3 = 36a2 + 24a + 1    provided 

                                         q  =  36a2 + 24a + 1              is  prime.                                     (3) 

(ii)  If   T = 3a+ 2,  then  4T2 – 3 = 4(3a + 2)2 – 3 = 36a2 + 48a + 13  provided 

                                         q  =  36a2 + 48a + 13            is  prime.                                     (4) 

 

       We now demonstrate some solutions of  (1)  using  (3)  and  (4). 

If  (3),  then the first two solutions for which  q  is prime are: 

 

Solution  1.                    31 + 611      =   82                     a = 1, 

 

Solution  2.                    31 + 1931  =   142                              a = 2. 
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If  (4),  then the first two solutions for which  q  is prime are: 

 

Solution  3.                     31 + 131     =   42                    a = 0, 

 

Solution  4.                     31 + 971   =   102                            a = 1. 

 

There are infinitely many primes of the form  4N + 1.  There are also infinitely many 

primes  q  of the form  q  in  (3)  as well as of the form  q  in  (4).  For our purposes, it 

certainly  suffices that only one of these forms contain infinitely many primes. 

The equation  31 + q1 = z2  has infinitely many solutions. 

 

The case   x + y = 3. 

 

The case  x + y = 3,  has the two possibilities  (b)  and  (c). 

 

(b).   x = 1   and   y = 2. 

We have 

31 + q2 = z2 

which  yields  3 = z2 – q2 = (z – q)(z + q). Hence,  z – q = 1  and  z + q = 3. Then  z = q + 1   

implying that  2q + 1 = 3   or   q = 1  which is impossible. 

       The equation  31 + q2 = z2   has no solutions. 

 

(c).   x = 2   and   y = 1. 

We obtain   

32 + q1 = z2 

which  yields  q = z2 – 32 = (z – 3)(z + 3).Thus,  z– 3 = 1  and  z + 3 = q.  Therefore  z = 4  

and  q = 7. 

       The equation  32 + q1 = z2  has the unique solution   

 

Solution  5.                                           32 + 71  =  42.    

 

        The case   x + y = 3   is complete,  and consists of exactly one solution.                        

 

The case  x + y = 4. 

 

The case   x + y = 4  consists of three possibilities demonstrated in (d) – (f). 

 

(d).    x = 1   and   y = 3.  

We have 

                                                    31 + q3 = z2,                      z  is even.                              (5) 

The value  z2  is even, denoted  z2 = 4T2.  If  q = 4N + 3,  then  q3 =  4M + 3  and  (5)  is 

clearly  impossible.  Therefore   q = 4N + 1.  Each  of  the  54  primes  q = 4N + 1   where   

5 ≤ q ≤ 617,  and up to  3 + 6173 =  234885116   have been examined.  No solutions to  

(5)  have been found. 

       It is presumed therefore that  31 + q3 = z2  has no solutions. 
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(e).   x = 2   and   y = 2. 

We have 

                                                         32 + q2 = z2.                                                               (6) 

 From  (6)   32 = z2 - q2 = (z – q)(z + q).  Hence,  z – q = 1,  3,  32,  and  then  respectively   

z  +  q  =  32,  3,  1.  The  last  two  possibilities  are  a priori  eliminated.  Thus,  we   have   

z – q = 1  and   z + q = 32.  The  values  z – q = 1  and   z + q = 32  yield   2q + 1 =  32   or   

q = 4  which is impossible. 

       The equation   32 + q2 = z2   has no solutions. 

 

(f).   x = 3  and   y = 1. 

We have 

                                                             33 + q1 = z2,                    z is even.                        (7) 

Since  z2  is even  and  z2 = 4T2,  it therefore  follows that  q = 4N + 1.  All  such primes  q  

where  5 ≤ q ≤ 617  have been examined.   

        The first five solutions of  (7)  are as follows:   

 

Solution  6.                     33 + 371     =    82. 

 

Solution  7.                     33 + 731       =    102. 

 

Solution  8.                     33 + 2291   =    162. 

 

Solution  9.                     33 + 3731   =    202. 

 

Solution  10.                   33 + 4571   =    222. 

 

       In view of the above solutions, it is presumed that the equation 33 + q1 = z2  has 

infinitely many solutions. 

       Case  (f)  is complete, and concludes the proof of Theorem  2.1.                   □ 

 

       So far, we have considered primes  q  where  q > 3.  When  q = 3,  an interesting fact 

stems from the following  Lemma  2.1. 

 

Lemma  2.1.   Let m = 1, 2, …,  and suppose that 3x + 3y = z2,  where  x,  y  are 

consecutive integers. 

(i)     If    x  =  2m,  y = 2m - 1,  then for all  m ≥ 1,  32m + 32m – 1 =  z2  has no solutions. 

(ii)   If   x  =  2m + 1,  y = 2m,  then for all  m ≥ 1,  32m+ 1 + 32m = z2 has infinitely many 

solutions. 

 

Proof:   (i)   Suppose  32m + 32m – 1 =  z2.  Here we shall apply the technique introduced in  

[1].  For all m ≥ 1,  any solution of  32m + 32m – 1 =  z2  implies that  z2  is even.  It is then 

easily seen that either  z2  ends in the digit  2  or ends in the digit  8.  Since no even square 

ends either in the digit  2  or ends  in the digit  8, it follows that  32m + 32m – 1 =  z2  has no 

solutions. 

 

(ii)   Suppose that  32m+ 1 + 32m = z2.  Then  
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32m+ 1 + 32m = 32m(3 + 1) = (3m)2⸱ 22 = (2 ⸱ 3m)2 = z2, 

where   z   is a positive integer.  Thus,  for   each and  every  integer  m ≥ 1,  the equation   

32m+ 1 + 32m  =  z2   has a unique solution. 

       This concludes our proof.                                                                                        □ 

 

        We now demonstrate some solutions of   3x + qy = z2   in  which   x + y > 4. 

 

Solution  11.                  33 + 132    =  142               x + y = 5. 

 

Solution  12.                  34 + 191    =  102               x + y = 5. 

 

Solution  13.                  35 + 131    =  162               x + y = 6. 

 

Solution  14.                  35 + 1571  =  202               x + y = 6. 

 

Solution  15.                  37 + 3131  =  502          x + y = 8. 

 

Final remark. Finding all solutions  (x, y, z)  for the Diophantine equation  3x + qy = z2  

where  x, y, z  are positive integers is beyond the scope of this paper.  Moreover, a set of 

all solutions to the equation clearly does not exist.  However, finding particular solutions, 

or all the solutions to a given pair of fixed values  x, y  is possible.  This has been done in 

this paper for all the possibilities of  x + y = 2, 3, 4,  and for some particular values when  

x + y  >  4.  We mention that Solutions 3, 5, 7, 12, 13  were already exhibited in  [2]. 
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