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Abstract. A radiocoloring of a grapl® is a functionf from the vertex se¥(G) to the
set of all non-negative integers (labels) such tHgu)- f (v)E 2 if d(u,v)=1 and

| f u)-f(v)E1if d(u,v)=2. The number of discrete labels and the rangebei$aused
are called order and span, respectively. In thjgepawe concentrate on the minimum
order span radiocoloring problem. The optimizatipoblem tries to find, from all
minimum order assignments, one that uses the mmispan. We completely determine
the minimum order span of paths, cycles and redaltices. Moreover, we consider
some regular bipartite graphs and provide exactevidr their minimum order spans.
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1. Introduction

The frequency assignment problem (FAP) [13] in wadetworks is a well-studied,
interesting problem, aiming at assigning frequentietransmitters exploiting frequency
reuse while keeping signal interference to accégptivels. The FAP is, in many cases,
studied as a graph coloring problem, in which teetiges represent transmitters, the
edges represent interference between two transsiitiad the colors represent the
frequencies. Aradiocoloring, also known ad (2,1)-labdling [11], of a graphG is a
function f from the vertex se¥ (G) to the set of all non-negative integers (labelghs
that| f (u)- f (v) B 2if d(u,v)=1and f (u)- f (v)  1if d(u,v) =2, whered(u,v)denotes
the distance betwean andv. The number of discrete labels and the rangebefisaused
are callecbrder andspan, respectively.

Real networks reserve bandwidth (range of freqes)cirather than distinct
frequencies. In this case, an assignment seeksetaasi small range of frequencies as
possible [1-2,6,8,11,14,18-24]. For more detailse may refer to the surveys [4,25]. It is
sometimes desirable to use as few distinct freasnaf a given bandwidth (span) as
possible, since the unused frequencies are awaifablother use. However, there are
cases where the primary objective is to minimizeribmber of frequencies used and the
span is a secondary objective, since we do not wargserve unnecessary large span.
These optimization versions of the radiocoloringlgem (for short RCP) are the main
objects of study in this work and are defined dieves.
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Definition 1.1. (Minimum order RCP) The optimization version o&tRCP that tries to
minimize the order. The optimal order is call¥d,,, .
Definition 1.2. (Minimum span RCP) The optimization version of REP that tries to
minimize the span. The optimal span is calkg, .
Definition 1.3. (Minimum span order RCP) The optimization versanthe RCP that
tries to find from all minimum span assignmentsg ¢imat uses as few labels as possible.
The order of such an assignment is cabid, .

Definition 1.4. (Minimum order span RCP) The optimization versanthe RCP that
tries to find, from all minimum order assignmerdgge that uses a minimum span. The
span of such an assignment is calkyg, .

and X, 44 < Xgn +1. Also, it holds thatx < X_,
The equality holds for graphs of diameter at mast t However, X can be much less

It easy to see thaX_,, < X

order

than X_,,. For example, we can show that  (T)=A+2 while X__ (T)=2A, where
T is a tree containing A -vertex such that all of its adjacent vertices Arevertex.
Another variation of FAP is related to the squdre graph, which is defined as follows:
the square G? of a graphG is given byv(G?*) =V(G) anduvOE(G?) if and only if
d(u,v)< 2. The problem is to color the square of a gr&hso that no two adjacent
vertices (inG®) get the same color. The objective is to use ti@nmum number of
colors, denotedy(G?) and calledchromatic number of the square of the graph. [9-10]
first observed that for any gragh, X, is the same as the chromatic numbeGo6f
i.e. X, (G)=x(G? . However, notice that, the set of colors usedhia tomputed
assignments of the two problems are different. ddiers of the distance one vertices in
the RCP should be at frequency distance two instéamhe in the coloring of the?.
However, from a valid coloring o6*we can always reach a valid radiocoloring®fby
doubling the assigned color of each vertex. Obstraey (G*) < X, (G) +1< 2y (G*)- 1.

In [12], it has been proved that the problem of thimimum span RCP is NP-
complete, even for graphs of diameter 2. In [1&}, firoved that the problem of coloring
the square of a general graph (i.e. the minimuneroRICP) is NP-complete. It is also
shown that the minimum span order RCP are NP-cdamjite planar graphs in [9]. To
our knowledge, the minimum order span RCP has een linvestigated before.

In this paper, we concentrate on the minimum ospen radiocoloring problem. The
optimization problem tries to find, from all minimuorder assignments, one that uses the
minimum span. In Section 2, we completely deterntieminimum order span of paths,
cycles and regular lattices. In Section 3, we amrssome regular bipartite graphs and
provide exact value for their minimum order spans.

2. Theminimum order span of paths, cyclesand regular lattices
A vertexv is calledk-vertex if d(v) =k, whered(v) is the degree of in G. We denote

the maximum degree @ by A(G), or A if G is clear in the context. As we are seeking

for the minimum order span of a radiocoloring, waymassume that the label 0 is used by
any radiocoloring. The following lemma is easy &oify.
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Lemma?2.l. Let G be a graph. Then

(1) A+1< X, 4 G)<IVG) |, and X, (G) =|V (G) | if and only if the diameter of is at
most two.
(2) Xgan(G) = Xon (G) , @nd X, (G) = XL,,,(G) if the diameter ofG is at most two.

(3) [15] X, (T) = x(T?)=A+1, whereT is a tree with at least one edge.

order

In [11], Griggs and Yeh studied the minimum spahpaths and cycles and proved
the following results.

Theorem 2.2. [11] Let P, be a path witm vertices.

2, if n=2,
Then X_.(R)=13, if n=3,4,
4, if n=5.

Theorem 2.3. [11] Let C, be a cycle withn vertices. TheiX__ (C,)=4.

span

Now we consider the minimum order span of pathscyates.

Theorem 2.4. Let P, be a path witm vertices.

2, if n=2,
Thenx;pan(a): 3, if n=3,
4, if nz4.
Proof: Let P, =vyv,..v,. By Lemma 2.1, it is clear that_,, (P,)=2 and X_, (P,) =3

whenn=>3.
For n=2,3, X, (P)=X,,(P)=2 and X__ (R,) = X_,,(P,) =3 using the Lemma
2.1 and the fact that the diametersRfand P, are at most 2.
For n=4, suppose for the contrary, thatis a radiocoloring with order 3 and span 3.
If f(v,)=1, then{f(v), f(v)} £3,4} and f(v,) =2, a contradiction toxX_, (P,) =3. If
f(v,) =2, then{f(v,), f(v)} 0,4} . This contradicts the assumption that the spaf of
is 3. Sof(v,)0{,2}. Similarly, f(v,)0{,2} . This implies{ f(v,), f(v)} 50,3}. But
now { f(v), f(v)} 1,2} , again a contradiction &, (P,)=3. HenceX_  (P,)24.
Forn>5, X_. (R)2 X, (R)=4 inview of Lemma 2.1 and Theorem 2.2.
For n=4, in order to show the upper bound, we define @cadoring with order 3
0, if i=0(mod3)
and span 4 as follows:f (v)=12, if i=1(mod3)
4, if i=2(mod3)
Therefore,X_, (R,)<4 for n>4. ]

order
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Theorem 2.5. Let C, be a cycle witm vertices.
Then X’ _(C.)= 4, ifn=50rn= O(m.od3))r n= 0(mod4
Pantneo5, otherwise.
Proof: Let C, =vv,..v,v,. Observe thaX
Otherwise, X (C,) =4 by [3].
It follows from Lemma 2.1 and Theorem 2.3 théf, (C,) 2 X_,,(C,) =4. Now we
treat the following two cases to prove.
Casel: n=5 or n=0(mod3) or n=0(mod 4).
Forn=5, itis clear thatx_, (C;) = X, (Cs) =4 since the diameter &, is 2.
For n=0(mod3), in order to provex. (C,)<4, we define a radiocoloring with

span
order 3 and span 4 as follows:

(C,)=5 and X, (C,) =3 if n=0(mod3).

order order

0, if i=0(mod3)
f(v)=42, if i=1(mod3)
4, if i=2(mod3)
For n=0(mod 4), we construct a radiocoloring with order 4 and span 4 as follows:

0, if i=0(mod4)
; _ |3, if i=1(mod4),
WMD=11 it i = 2(moda)

4, if i=3(mod4)

Thus, X_,,(C,)=4 whenn=5 or n=0(mod3) or n=0(mod 4).
Case2: n#5 andn# 0(mod3) and n# 0(mod 4).

Suppose to the contrary th@} admits a radiocoloring with order 4 and span 4.
Without loss of generality, lef (v,) =0. Then{ f(v,), f(v,)} G{2,3},{2,4},{3,4}}

Case2.1: {f(v,), f(v)} 52,3} .

Then{ f(v,), f(v,_)} 51,4} , a contradiction taX
Case2.2: {f(v,), f(v,)} 52,4} .

Assume thatf (v,) =4, f (v,)= 2. In the case, iff (v;) =1, then we need (v,) =3,
again a contradiction t& .. (C,) =4. This implies thatf (v;) =2, f (v,) = 0. Going on
this process, we havé(v,,,)=0,f (v,,,)=4 and f(v,,)=2, wherek=0,1,....
Therefore,n = 0(mod 3). This contradics to our assumption.

Case2.3: {f(v,), f(v,)} 3,4} .

Suppose thaf (v,) =4, f (v,)=3. Then f(v,_,) = f (v;) =1. Going on this process, we
have f (v,,,,) =0, f (v,,,)=4,f ,,,)=1and f (v,,,) =3, wherek=0,1,... Therefore,
n=0(mod 4), again a contradiction.

Accordingly, X_,, (C,) 25. It remains to show thax_  (C )<5.

(C)=4.

order
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We present a radiocoloring with order 4 and spams5follows: f(v,,,) =0,
f (Vaein) =4, T(Vy.5) =2, wherek=0,1,...and f (v,) =5 for n=1(mod3); f (v,) = f ()
=0, F(v,) = f(V) =3, f(v)=F(v,)=1, f(v,)=f(v)=5and f(v,)=0,f (va.,)=3,
f (Vas,) =5, Wherek =3,4,.., for n=2(mod3).

Thereforex_, (C,) =5 whenn#5 andn# 0(mod3) and n # 0(mod 4).

This concludes the proof of Theorem Z.5.

In the following, we will consider the minimum omdspan of regular lattices. The
minimum order and span of regular lattices havenbg®ved by means of optimal-
labelling algorithms in [3,5] respectively.

Theorem 2.6. [3,5] Let G, be aA -regular lattice, wheré =3,4 or 6.
4, if A=3,

Then X .. (G,) =15, if A=4,
7, if A=6.

For a vertexv OV (G), let N(v) ={u: uwvOE(G)} andN[v] = N(v) L{V¥ .

Theorem 2.7. Let G, be aA -regular lattice.

6, if A=3,
Then X (G,)=48, if A=4,
12, if A=6.

Proof: In view of X, (G,) =5, we assume that is a radiocoloring with order 5 and
f(\V(G,)={a,a,a,a,a}. LetudVv(G,) and f (u) =g for somei[1{L,2,3,4,5}. Then
f(N(u) ={a, a, a,a,ag\{ & . This implies|a, -a [k 2 for eachj #i . In fact, for all
10{1,2,3,4,5}, we always havga, —a p 2 for eachj #i. HenceX_  (G,)=8.

Similarly, we can show that_ (G,) 26 and X, (G;) 212.

It remains to give a radiocoloring &, with order 5 and span 8, as shown in Figure
1, a radiocoloring ofG, with order 4 and span 6, as shown in Figure 2. And
radiocoloring ofG, with order 7 and span 12 is given in Figure 3.sT¢omplete the
proof of Theorem 2.7

3. Theminimum order span of someregular bipartite graphs
In this section, we consider the minimum order spidaregular bipartite graphs ofn
vertices.

Theorem 3.1. Let G be ak-regular bipartite graph o2n vertices. Ifk =n or n-1, then

X' (G)= X (G)= 2n, if  k=n,
wan =/ et T on -2, if k=n-1.
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Proof: For k=n or n-1, observe thaG is a regular bipartite graphs with diameter
two. Thus X (G) = X,,,(G) by Lemma 2.1.
On the other handX,,(G) =2n whenk =n, which is shown by Crompton in [7].
For k=n-1, itis shown by Liu and Yeh [17] that__ (G) = 2n- 2. This completes the
proof of the theorem]

|0 2 4 6 8lI[0 2 4 6 B]| 0-

lo I8 o la lol6 8 lo la 2] 6

4 6 lo 2 la 6 lo 2] |a-

4 6 Jo 2|4 6 Jo 2 Ja--

0 2 4 6 0 2 4 6 o0-

Figure 2: A radiocoloring ofG, with order 4 and span 6.

Next, we consider the case fore=n-2. The following result shows the order of
(n-2)-regular bipartite graph obn vertices.

Theorem 3.2. [26] Let G be a(n-2)-regular bipartite graph obn vertices.
1, if n=2,

Then X .. (G)=12, if n=3,
n, if n=4.

202



The radiocoloring problem on some graphs
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Figure3: A radiocoloring ofG, with order 7 and span 12.

Theorem 3.3. Let G be a(n-2)-regular bipartite graph oBn(n> 5) vertices. Then
Xeen(G) =2(n-1)-1, wherel is the number of 4-cycles K, -G.

Proof: Firstly, X, (G)=n inview of n=5. Suppose thafC, C,,...,C,} is the set of all
cyclesinK, -G.LetG=(X,Y), G =G[C]=(X;Y),whereX, =V(C)NX,Y, =V(C)
Y. Let f be aradiocoloring o6 with ordern and f (V(G)) ={a, a,,...,a,} . Then we

have the following facts hold.
Fact 1: For eachx,yO X (or x,y0Y), it must be thati(x,y) =2 sincen=5. Thus all

labels in f (X) or all labels inf (Y) are all different. This means
f(X)=1(¥)=f(V(G))-
Fact 2: For eachxOV(G), yOV(G))(i # j), we haved(x,y) =1,
Therefore f (V(G))N f(V(G)))=0 foralli#j.
Combined with Fact 1 and Fact 2, we obt#ifX,) = f () = f (V(G)) for eachi .
Fact 3: If |C, i 6, then any two labels i (V(G)) are at least two apart.

By Fact 1-3, we conclude that_ (G)22(n-1)-1.
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On the other hand, suppose= x y,x,y,..x, y, x;, wherex; 0 X and y, OY for
i=12,..n,1=12,..k. With no loss of generality, let,,C,,....C, be all the 4-cycles.
We define a radiocoloring a& with ordern and spare(n-1)-1 as follows.
. . o (3-3,if j=1,
Fori=12,.), f(xX)=f(y)=
b £06) = 1(y)) {3i S2if j=2.

- . - - @=2+2j, ¢ =4y
Fori=1+1..k, j=12,..n, f(x)=f(y))= -1 o
(3|_2)+2|21n‘+ 2j,if i=1+2,..k.
t=l+

Then

k-1 k
Xon(@ S f(YL)=(@-2)+22 n+ N = @3- 2} 22 n= (8- 2y 2(- 2F 2(- BI.
Therefore, X! _(G)=2(n-1)-1.

span

01 34 6 310121416182022242628
X as oo 009 29r900 000090

01 3 4 6 810121416182022242628
Figure4: The radiocoloring on a 14-regular bipartite graph32 vertices
with order 16 and span 28, where -G=C,UC,UC,UC,UC,

ang, FIC, F 4.C. ¥ 6¢,4 6Gs=] 1

Finally, we consider the minimum order span of diecice graph of a projective
plane. We say a graphis anincidence graph of a projective plan€l(n) of ordern, if

G(X,Y,E) is a bipartite graph such that
(1) IXEIY En*+n+1,
(2) eachxO X corresponds to a poirg, in M(n) and eachyY corresponds to a line
l, in N(n), and
() E={{x ¥, xOX yOY such thatp Ol in M(n)}.
By the definition off1(n), we know that sucl® is (n+1)-regular, for every
x, yOX, d(x,y) =2, and for everyx,yY , d(x,y) = 2. Also, if xO X, yOY such thatx
is not adjacent toy, thend(x,y) =3.

Theorem 3.4. Let G be the incidence graph of a projective plane oéord
Then X, (G)=n’+n.

Proof: Itis shown by Liu and Yeh [17] thaX_ (G) = X
| X En®+n+1and foreveryx,y X, d(xy) =2, for any radiocoloringf of G with

spann? +n, the order off is alwaysn®+n+1. HenceX_, (G)=n’+n. [J

(G)+1=n*+n. Since

order
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By the definition, we know that the diameter of theidence graph of a projective
plane of ordem is 3. However,X_ (G) = X,,(G) . This implies the diameter @ is at

most two is sufficient but not necessary 0t (G) = X,,,(G) .
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