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Abstract, Recently, some temperature indices of a graph wémreduced and studied. In
this paper, we introduce tha, @)-temperature index of a graph. Also we computgahe
b)-temperature index fad-Naphtalenic nanotubes and compute some other taimper
indices for some other particular valuesa@indb for H-Naphtalenic nanotubes.
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1. Introduction

A molecular graph is a simple graph, representiegcarbon atom skeleton of an organic
molecule of the hydrocarbon. Therefore the vertisea molecular graph represent the
carbon atoms and its edges the carbon-carbon b&hésnical Graph Theory is a branch
of Mathematical Chemistry which has an importarfe@f on the development of
Chemical Sciences. Several graph indices have fa@onte applications in Chemistry,
especially in QSPR/QSAR research [1, 2, 3].

Throughout this paper, we consider simple graphgtwhre finite, connected,
undirected graphs without loops and multiple ed§jes.G be such a graph with vertex
setV(G) and edge sdE(G). The degreals(u) of a vertexu is the number of vertices
adjacent tal. For term and concept not given here, we refer [4]

In [5], Fajtlowicz defined the temperature of ate&u of a graphG as

_ g (u) _
T (u) e W) where Y(G)| =n.

The second hyper temperature index and generahddemperature index of a
graph were introduced by Kulli in [6] and they defined as

HLG)= Y [TWTW],

wE(G)

7E)= Y [Tt

WE(G)
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wherea is a real number.

Also in the same paper [6], Kulli introduced theduct connectivity temperature
index, reciprocal product connectivity temperatimdex, F-temperature index of a graph
and they are defined as

PT(G)= ;,
UVDZE%G) T(u)T(v)

RPT(G)= > JTW)TW),

WIE(G)

FTe)= 3 [T +T(W)?]

wiE(G)

We introduce the symmetric division temperatudeinof a graph, defined as

T(u)  T(v)
uvDE(G)[m +mj

We now introduce the first and second Gourava &atpre indices of a graph
G, defined as

GL(G)= > [TW)+TW)+TWTWV).
wE(G)
GTL(G)= > [TW)+TW]TW)T(v).
wiIE(G)
The general temperature index was introduced bii Ku[6] and this index is
defined as

DT(G) =

.= 3 [Tw*+Tw?]
wOE(G)
wherea is a real number.

Motivated by the work on degree based temperandiees, we define the(b)-
temperature index of a gra@has

T (@)= 3 [TWTMP +TWPTW)?],
WE(G)
wherea, b are real numbers.

Recently, some temperature indices were introduaad studied such as
multiplicative first and second temperature indifds general vertex temperature index
[8], multiplicative @, b)-temperature index [9]. Recently, some new topicllgndices
were studied in [10, 11, 12, 13, 14, 15, 16, 17,188.

In this paper, we compute the, (b)-temperature index and some other
temperature indices for particular valuesao&ndb for H-Naphtalenic nanotubes. For
more information about this nanotube, see [20].

2. Observations

We observe the following observations between #héd)temperature index with some
other temperature indices.
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(1) HT,(G) =%T2‘2(G). 2 T2(G) =%Taya (G).

3) PT(G) “1r 1 1(G). (4) RPT(G) :ET1 1 (G).
2572 2 22

(5) FT(G)=T,4(G). (6) DT(G)=T,,(G).

(7) GT(G)=T,,(G). 8) T.(G)=T,,(G).

3. Resultsfor H-Naphtalenic nanotubes

In this section we consider a family bl-Naphtalenic nanotubes. This nanotube is a
trivalent decoration having a sequenceCgfCs, C4, Cs, Cg, Cq, ... in the first row and a
sequence o€, Cg, Cq, Cg ... in other row. This nanotube is denoted NifPX[m, n],
wheremis the number of pair of hexagons in first row and the number of alternative
hexagons in a column as shown in Figure 1.

"
X
8
%
X
0)

Figure 1.

Let G be a graph of a nanotubdHPX [m, n]. By calculation,G has 10nn
vertices and 1Ifsn — 2m edges. We obtain th& has two types of edges based on the
degree of end vertices of each edge as follows:

E; ={uv O E(G) | ds(u) = 2,ds(Vv) = 3} [Ei| = 8n.

E; ={uv O E(G) | ds(u) = dg(v) = 3} [Ez] = 15nn— 10m.

Thus inG, there are two types of edges based on the tetope end vertices of
each edge as given in Table 1.

T(u), T(vV)\uv O E(G) ( 2 , 3 J [ 3 , 3 J
10mn-2 10mn-— 10mn-3 10mn-—
Number of edge 8m 15mn—10m

Table 1: Edge partition of5

Theorem 1. The @, b)-temperature index of a nanotukElP[m, n] is
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ratrvetm)=on (152 (52 o2 ()|

3 atb
+2(15mn - 10n)( j (1)
10mn-3
Proof: By definition and by Table 1, we deduce
Tao (NHPX[mn])= 3 [TWPTWP +T(W)°T(W?]

wiE(G)

=8m{(10mi—2ja(10ni— JJ{ mﬁ— ; ( 16m- M
szl 2 (2 s N
=\

1
o (152 (s e (o) |
=8m +
10mn-2 10nn - 16nn - 101n—

+2(15mn—10n)( 3 )M

10mn-3
We obtain the following results from Theorem 1.

Corollary 1.1. The second hyper temperature index of a nanadtitteX[m, n] is

HT, (NHPX[m,n]) =%T2‘2(NHPX [m,n])

Sm[(lomn— 2)6( 10m - :J2 +(15m - 10n){ 101?1— I |

Corollary 1.2. The general second temperature index of a nan®HIRX [m, n] is

T2 (NHPX[m, n]) aa(NHPx[m n))

- m(10mn—2)(10m—3a+(15mn_10n) 16m - )
| =303 o

Corollary 1.3. The product connectivity temperature index of aatabeNHPX[m, n] is
PT(NHPX[m,n]):%T 1 1(NHPX[m,n])
2 2

8 my/(10mn - 2)(10mn - 3+%( 15n- 16)( 1on- B

V6

Corollary 1.4. The reciprocal product connectivity temperatudeiof a nanotube
NHPX [m, n] is

RPT (NHPX [m,n]) _—T1 1 (NHPX [m,n])
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8J/6m , A15m - 16n)
Jaom-2(10m-3  10m-3 -
Corollary 1.5. TheF-temperature index of a nanotu’ElPX [m, n] is
FT(NHPX[m,n]) =T, o( NHPX [m,n])
270 32 108
- MmN+ [ >~ 2} m.
(10mn ~ 3y (1omn-2° (10m- 3

Corollary 1.6. The symmetric division temperature index of a nabheNHPX [m, n] is
SOT(NHPX [mn]) =T, _;(NHPX [m;n])

4(1300m*n2 - 606N+ 72
3(10mn- 2(10m- 3

=30mn+[ —Zo}m.

Corollary 1.7. The second Gourava temperature index of a nan®HlifeX [m, n] is
GT, (NHPX [m,n]) =T, (NHPX [m,n])

_ 48m { 2 N 3 l
(1o -2)(10mn- 3[ 10n- 2 16n-
3
+(30mn - ZOrn)( 3 j :
10mn-3
Corollary 1.8. The general temperature index of a nanotdd@X [m, n] is
T, (NHPX[m,n]) =T, o (NHPX [m,n])

om (o) (g | 2tisme 1o 2]

Theorem 2. The first Gourava temperature index of a nanotiHEX [m, n] is
GTZ(NHPX[m,n])z{ S0mn - 6 } | IM=9

(1omn-2)(10m- 3 (10mn-23
Proof: By definition and by using Table 1, we derive

Tap (NHPX[mn])= > [T(W+T W) +T(W)T (V)]

wlE(G)

e e |
= + + 8m
LOmn—Z 10mn- 3 \ 10n- 16n -

+[ 3 + 3 +( 3 g( 3 ;}(15mn—10n)
10mn-3 10mn- 3 \ 1onn-— 16in -

{ 50mn- 6 } L|_6mn-9
(10mn-2)(10mn- 3 (10mn - 37

}(lfmn —10m)

}(15mn -10m) .

4. Conclusion
In this paper, thea( b)-temperature index and some other temperaturegador
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particular values o andb for H-Naptalenic nanotubes are determined.
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