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Abstract.   In  this  article,  the  author  has  investigated  the  equations   2x + 11y = z2   and   
19x + 29y = z2   with positive integers  x, y, z.  It was established that both equations have 
no solutions. 
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1.   Introduction 
The field of Diophantine equations is ancient, vast, and no general method exists to decide 
whether a given Diophantine equation has any solutions, or how many solutions.  In most 
cases, we are reduced to study individual equations, rather than classes of equations. 
       The famous general equation 

px + qy = z2 
has many forms.  The literature contains a very large number of articles on non-linear such 
individual equations involving particular primes and powers of all kinds. Among them are 
for example [2, 4, 6, 8]. 
       In this article, we consider the two equations  2x + 11y = z2  and  19x + 29y = z2  in which  
x, y, z  are positive integers.  It will be shown that both equations have no solutions.  This 
is done in Sections  2  and  3.  Although similarities exist, nevertheless, the theorems and 
all the cases within are self-contained.  The results achieved are mainly and in particular 
based on our new method which utilizes the last digits of the powers involved. 
 
2.   The equation  2x + 11y = z2 
 
Theorem  2.1.   Let  x, y, z  be positive integers.  Then the equation  2x + 11y = z2  has no 
solutions. 
 
Proof:   Let  m ≥ 0  be an integer.  For all values  x ≥ 1,  four possibilities exist:  
(a) x = 4m + 1, y ≥ 1, m ≥ 0. 
(b) x = 4m + 2, y ≥ 1, m ≥ 0. 
(c) x = 4m + 3, y ≥ 1, m ≥ 0. 
(d) x = 4m, y ≥ 1, m ≥ 1. 
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(a)   Suppose that   x = 4m + 1,  y ≥ 1.   
For all values  m ≥ 0,  the power  24m + 1  ends in the digit  2.  For all values y ≥ 1, the power    
11y  ends in the digit 1. Hence 24m + 1 + 11y  ends in the digit 3. If for some value  z,  24m + 1 
+ 11y = z2,  then  z2  is odd and ends in the digit 3.  But, an odd square does not have a last 
digit which is equal to  3.  Therefore it follows that  24m + 1 + 11y  ≠ z2. 
Case  (a)  is complete. 
 
(b)   Suppose that  x = 4m + 2,  y ≥ 1.  
We shall assume that  24m + 2 + 11y  = z2  has a solution, and reach a contradiction. 
       By  our  assumption,  we  have   24m + 2 + 11y  = z2  implying  that   11y  =  z2 – 24m + 2 =  
z2 – 22(2m + 1)  or 

11y = (z – 22m +1)(z + 22m +1). 
Denote   

z – 22m +1 = 11A,          z + 22m +1 = 11B ,         A < B,         A + B = y, 
where  A, B  are non-negative integers.  Then  11B  –  11A  yields 
                                                               2⸱22m +1 = 11A(11B – A – 1).                                             (1) 
If  A > 0,  then  11A ∤ 2⸱22m +1  in  (1).  Therefore  A ≯ 0,  and  A = 0.  When A = 0,  then  B 
= y,  and  (1)  results in  
                                                               22m +2 = 11y – 1.                                                    (2) 
Since  for  all  values  y,  the power  11y  ends  in  the  digit  1,  therefore  in  (2)  the value   
11y – 1  ends in the digit  0.  This implies that  11y – 1  is a product of  5.  But  5 ∤ 22m +2,  
and hence  (2)  is impossible.  This contradicts our assumption that when  x = 4m + 2  the 
equation has a solution, and hence  24m + 2 + 11y  ≠ z2. 
This concludes case  (b). 
 
(c)   Suppose that  x = 4m + 3,  y ≥ 1. 
We shall assume that  24m + 3 + 11y  = z2  has a solution, and reach a contradiction. 
       The sum  24m + 3 + 11y  is odd,  hence by our assumption  z2  is odd.  An odd number z 
is of the form  4N + 1  or  4N + 3.  Thus, in any case  z2  has the form  4T + 1  where  T  is 
an integer.  We shall now consider two cases, namely  y  is odd and  y  is even. 
 
       Suppose  y  is  odd  and  y = 2n + 1  where  n ≥ 0  is  an  integer.  Since  11 =  4N + 3   
(N = 2),  then for all values  n,  112n + 1  is of the form  4U + 3  where  U  is an integer.  The 
power  24m + 3  is of the form  4V  where  V  is an integer.  Thus,  the sum  24m + 3 + 112n + 1  
has the form  4(V + U) + 3 ≠ 4T + 1 = z2.  Hence  y ≠ 2n + 1.  
       Suppose  y  is even and  y = 2k  where  k ≥ 1  is an integer.  We have  24m + 3 + 112k = 
z2  or  24m + 3 =  z2 – 112k = z2 – (11k)2  and  
                                                        24m + 3 = (z –11k)(z + 11k).                                                 (3) 
Denote in  (3) 

z – 11k = 2C,          z + 11k = 2D,         C < D,         C + D = 4m + 3, 
where  C, D  are non- negative integers.  Then  2D – 2C  yields  
                                                             2⸱11k = 2C(2D – C – 1).                                              (4) 
It follows from  (4)  that  C > 0,  and  C = 1  is the only such possibility.  When  C = 1  then  
D = 4m + 2,  and  (4)  after simplification results in  
                                                                  11k = 24m + 1  –  1.                                               (5) 
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       When  k = 2a + 1 where  a  is an integer,  one could verify that for all  a ≥ 0  the sum  
112a + 1 + 1 is a multiple of  3.  Hence,  if  k = 2a + 1  in  (5),  then  112a + 1 ≠ 24m + 1 – 1,  
implying that  k ≠ 2a + 1.  When  k = 2a,  then  112a + 1 = 2b  where for all values  a,  the 
value  b  is an odd integer. Thus,  112a  + 1 = 2b ≠ 24m + 1  and  k ≠ 2a.  It now follows that 
there does not exist a value  y  which satisfies the equation  24m + 3 + 11y = z2.  This is a 
contradiction, and our assumption is therefore false.  
This completes case  (c). 
 
(d)   Suppose that  x = 4m,  y ≥ 1. 
For all values  m ≥ 1,  the power  24m  ends in the digit  6.  For all  y ≥ 1, the power 11y  
ends in the digit  1.  Therefore  24m +11y  ends in the digit  7.  If  for some value  z,  the sum  
24m + 11y  equals   z2,  then  z2  is odd and ends in the digit  7.  An odd square does not have 
a last digit which is equal to  7.  It therefore follows that  24m + 11y ≠ z2.   
This concludes case  (d).  The equation  2x + 11y = z2  has no solutions.  
       The proof of Theorem  2.1  is complete.                          □ 
 
Remark  2.1.   The equivalent equation for  (2)  is  1 = 11y – 22m + 2,  whereas for  (5)  the 
equivalent equation  is  1 = 24m + 1 – 11k.  In each of the equivalent equations, the conditions  
of  Catalan's Conjecture are satisfied.  As a consequence of Catalan's Conjecture, it follows 
that each equivalent equation has no solutions.  In another manner, this reaffirms what we 
have shown earlier in a different way that equations  (2)  and  (5)  have no solutions.  We 
have not used  Catalan's Conjecture earlier, since we have a preference for the elementary 
way. 
 
3.   The equation  19x + 29y = z2    
 
Theorem  3.1.   Let  x, y, z  be positive integers.  Then the equation  19x + 29y = z2  has no 
solutions. 
 
Proof:   For all values   x ≥ 1,  the power  19x  ends  in  the  digits  9  and  1.  For all values   
y ≥ 1,  the power  29y  ends in the digits  9 and  1.  Let  m, n  be non-negative integers.  We 
shall consider the four existing possibilities as follows: 
 
(a) x = 2m + 1, y = 2n + 1, m ≥ 0, n ≥ 0. 
(b) x = 2m + 1, y = 2n, m ≥ 0, n ≥ 1. 
(c) x = 2m, y = 2n + 1, m ≥ 1, n ≥ 0. 
(d) x = 2m, y = 2n, m ≥ 1, n ≥ 1. 

 
(a)   Suppose that   x = 2m + 1,  y = 2n + 1. 
For all values  m ≥ 0,   n ≥ 0,  each of the powers  192m + 1  and   292n + 1  has a last digit 
equal to  9.  If for some value  z,  192m + 1 +  292n + 1 =  z2,  then  z2  is  even  and ends in the 
digit  8.  An even square does not have a last digit equal to  8,  therefore 192m + 1 +  292n + 1 
≠  z2.   
Case  (a)  is complete. 
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(b)   Suppose that   x = 2m + 1,  y = 2n. 
We shall assume that  192m + 1 +  292n  = z2  has a solution, and reach a contradiction. 
       For  all  values  m ≥ 0,  the  power  192m + 1   has  a  last digit equal to  9.  For all values   
n ≥ 1,  the power  292n  has a last digit equal to 1.  By our assumption, we have  192m + 1 +  
292n = z2  implying that  192m + 1 = z2 – 292n = z2 – (29n)2  or  

192m + 1 = (z – 29n)(z + 29n). 
Denote 

z – 29n = 19A,          z + 29n = 19B ,         A < B,         A + B = 2m + 1, 
where  A, B  are non-negative integers.  Then  19B  –  19A  results in 
                                                               2⸱29n = 19A(19B – A – 1).                                             (6) 
If  A > 0,  the power  19A  does not divide the left side of  (6),  and therefore  A = 0.  When 
A = 0,  then  B = 2m + 1,  and  (6)  implies  
                                                               2⸱29n = 192m + 1 – 1.                                              (7) 
The right side of  (7)  is equal to  192m + 1 – 12m + 1,  which yields the identity      
                    192m + 1 – 12m + 1 = (19 – 1)(192m + 192m - 1⸱11  + 192m - 2⸱12 + ⸱⸱⸱ + 12m).           (8) 
In  (8),  the factor  (19 – 1) = 18 = 2⸱32.  Since in  (7)  3 ∤ 2⸱29n,  it follows that  (7)  is 
impossible.  This contradiction therefore implies that our assumption is false, and  192m + 1 
+  292n  ≠  z2.   
This concludes case (b). 
 
(c)   Suppose that   x = 2m,  y = 2n +1. 
We shall assume that  192m  +  292n + 1  = z2  has a solution, and reach a contradiction. 
        For all values  m ≥ 1, the power  192m  has a last digit equal to 1. For all values  n ≥ 0,  
the power  292n + 1  has a last digit equal to 9.  By our assumption, we have  192m  +  292n + 1  
= z2  implying that  292n + 1 = z2 – 192m = z2 – (19m)2  or  

292n + 1 = (z – 19m)(z + 19m). 
Denote 

z – 19m = 29C,          z + 19m = 29D ,         C < D,         C + D = 2n + 1, 
where  C, D  are non-negative integers.  Then  29D – 29C  yields  
                                                               2⸱19m = 29C(29D  –  C – 1).                                               (9) 
If  C > 0,  the power  29C  does not divide the left side of  (9),  and therefore  C = 0.  When   
C = 0,  then  D = 2n + 1,  and  (9)  implies  
                                                              2⸱19m = 292n + 1 – 1.                                               (10) 
The right side of  (10)  is equal  292n + 1 – 12n + 1,  which yields the identity  
                   292n + 1 – 12n + 1 = (29 – 1)(292n + 292n - 1⸱11 + 292n - 2⸱12 + ⸱⸱⸱ + 12n).              (11) 
In  (11),  the factor  (29 – 1) = 28 =  22⸱7.  Since in  (10)  22 ∤ 2⸱19m,  it follows that  (10)  
is impossible.  This contradiction therefore implies that our assumption is false, and  192m  
+  292n + 1  ≠ z2. 
Case  (c)  is complete.  
              
(d)   Suppose that   x = 2m,  y = 2n. 
For all values  m ≥ 1,   n ≥ 1,  each of the powers   192m  and   292n  has a last digit equal to  
1.  If for some value  z,  192m  +  292n  =  z2,  then  z2  is even and has a last digit equal to  2.  
An even square does not have a last digit equal to  2,  therefore 192m  +  292n 

≠ z2. 
Case  (d)  is complete.  The equation  19x + 29y = z2  has no solutions.   
       This concludes the proof of Theorem 3.1.                     □ 
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Final remark.  We have established that both equations 2x + 11y = z2  and  19x + 29y = z2  
have no solutions when  x, y, z  are positive integers.  Our new method of using the last 
digits of the powers involved has been a key factor in determining the solutions.  We are 
quite confident that this method can also be used in finding solutions to other equations.  
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