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Abstract. In this paper, we consider the equatiphs (p + 1) + (p + 2f = M3 when
p is prime andx, y, z are integers satisfying<x, y, z< 2. We establish: (i) A unique
solution exists wherp = 2. (ii) No solutions exist whep = 4N + 1. (i) Infinitely many
solutions exist whenp = 4N + 3, and x =y = z = 1. No solutions exist for all other
possibilities.
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1. Introduction
The field of Diophantine equations is ancient, vastl no general method exists to decide
whether a given Diophantine equation has any swiatior how many solutions.

The famous general equation

p+q=7

has many forms. The literature contains a vegedarumber of articles on non-linear such
individual equations involving particular primesdgoowers of all kinds. Among them are
for example [3, 4, 8, 9].

In [2], in a preliminary step towards larggequations, we have extended the above
equation to equations of the formp*+ (p+ 1Y+ (p+ 2¥ =M? for all primesp> 2
when 1<x,y,z<2. In[1, 2], we have determined all the solngidor all primep > 2
when 1<x,y, z< 2. In this paper, the equatiops+ (p + 1) + (p + 2Y =M? are taken
one step ahead, and we consider now equation® ébtim p*+ (p + 1) + (p + 2¢ = M?®
when 1<x,y,z< 2. For all primesp> 2, we establish all the solutions fpf+ (p + 1)
+(p+ 2y =M3 when 1<x,y,z< 2. This is done in the respective Sections 2n8 4
in which all theorems and all cases are considsepdrately and are self-contained.

2. Allthe solutions of p*+ (p+ 1) + (p + 2f=M* when p=2, 1<X,y,z<2
In this section all the solutions of* 2 ¥+ £ =M?3 are determined.

Theorem 2.1. Let 1<x,y,z<2. Then 2+ 3+ 4#=M3 has a unique solution when
x=1,y=z=2.
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Proof: When 1<x,y,z< 2, the eight cases of* 2 3+ 4 =M?3are listed below.

1) 2 + 3 + 4 =9 # M.
2) 2 + 3 + 4 = 21 # M
©) 2 + 2 + 4 = 15 # M
4) 2 + 3 + 4 = 11 # M
(5) 2+ 2 o+ 42 = F = M
(6) 2 + 3 + 42 = 23 # M
7) 22 + 3P + 4 = 17 # M.
(8) 22+ 3P + 4 = 29 # M.

It follows that casg5) when x =1,y =z =2 vyields a solution for whiciM = 3,
whereas in all other cas€$) — (4) (6) — (8) no solutions exist.

This completes the proof of Theorem 2.1. o
3. Allthe solutions of p*+ (p+ 1Y + (p + 2f=M3 when p=4N + 1, 1<X,y,z<2
Here we considep*+ (p+ 1Y + (p + 2F= M3 for all primesp=4N+ 1, when Kx,y, z
< 2. In Theorem 3.1 we establish that the equati@mve no solutions.

Theorem 3.1. Let 1<x,y,z<2. If p=4N+ 1, thenp*+ (p+ 1) + (p + 2F= M?® have
no solutions.

Proof: When 1<x,y,z<2 andp=4N + 1 is prime, eight cases exist:

1) 4N+1) + (AN+2) + (AN+3) = M
(2) 4N+1) + (4N+2) + (AN+37 = M.
(3) 4N+1) + (@N+22 + (4N+3) = M
4) (4AN+1? + (4N+2) + (AN+3) = M
(5) 4N+1) + (@N+22 + (@AN+3PF = M.
(6) (4AN+1? + (4N+2) + (AN+37 = M
(7) (4AN+1? + (@N+22 + (4N+3) = M
(8) AN+1? + (@N+22 + (AN+37 = M.

These eight cases each of which is self-containeda@nsidered separately.

(1) Thecase M+ 1)+ (N+2)+ (N+3)=M3
The left side of the equation yields
(AN+1D)+(N+2)+(N+3)=12N+6=6(N + 1).
The prime 2 in the factor 6 has an odd expoagquotlto 1. Since K+ 1) is odd, it
follows that 6( + 1) is not equal tdvi®.
The equation {4+ 1) + (N + 2) + (N + 3) =M? has no solutions.

(2) Thecase M+ 1)+ (N+2)+ (N+3¢=M.
The left side of the equation yields
(AN + 1) + (AN + 2) + (16N> + 24N + 9) = 4(M? + 8N + 3).
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The prime 2 in the factor 4 has an even expoegual to 2. Since K+ 8\ + 3) is
odd for all valuesN, it follows that 4(M? + 8N + 3)# M3,
The equation {4+ 1) + (N + 2) + (N + 3= M3 has no solutions.

(3) Thecase (d+ 1)+ (N+2¢+ (4N + 3) =M3,
Rewriting in terms op the left side of the equation, we obtain
p+P+1F+(p+2)=pPP+4p+3=0p+2F-1
If (p+2¢F—1=M3 then p+2F—-M3=1. Allfourvalues {+ 2),2,M and 3 satisfy
the conditions of Catalan's Conjecture which stitas 3 — 2= 1 is the only solution of

the above equation. Since this is impossiblalibWs that p + 2f — 1+ M3,
The equation [+ 1) + (N + 2 + (4N + 3) =M* has no solutions.

(4) Thecase M+ 1F+ (4N+2) + (N + 3)=M3
The left side of the equation yields

(16N? + 8N+ 1) + (AN + 2) + (AN + 3) = 2(8\? + 8N + 3).

The prime 2 has an odd exponent equal to 1trenthctor (81° + 8N + 3) is odd for all
valuesN. Hence 2(B?+ 8N + 3) # M3,
The equation {4+ 1F + (4N + 2) + (AN + 3)= M3 has no solutions.

(5) Thecase 4+ 1)+ (N+2F+ (4N + 3¢ =M:3
The left side of the equation yields

(4N + 1) + (16N2 + 16N + 4) + (16\% + 24N + 9) = 2(16N% + 22N + 7).

The prime 2 has an odd exponent equal to 1,thenfactor (1812 + 22N+ 7) is odd for
all valuesN. Thus 2(187 + 22N + 7)# M3,
The equation {4+ 1) + (N + 2F + (4N + 3¢ = M3 has no solutions.

(6) Thecase M+ 1P+ (4N+2) + (N + 3¢ =M.
Rewriting in terms op the left side of the equation, we obtain

PP+ (p+1)+ (p+ 2P =207+ 50+ 5= (2 +p+3)+2.

We shall assume that for some primpe (20> + 5p + 3) + 2 =M3 has a solution and reach
a contradiction.

The value (@ + 5+ 3) is even for all primeg. Our assumption that 2+ 5p +
3) + 2 =M2 implies that (p*>+ 50+ 3) + 2, M are even, ant®>— (*+ 5 +3)=2 is
the smallest possible difference of two consecudiven integers. We shall consider both
possibilities of p = 4N + 1, namely wherN is even and whem is odd.

It is easily seen thatp2+ 5p+ 5 =4(8\? + N + 3). If N is even, then (& + N
+ 3) is odd. The factor 4 = 2hen implies that 4(& + 9N + 3)# M® contrary to our
assumption. Thereforé\ is not even, and by our assumptibinis odd.
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WhenN is odd, sayN=2n+ 1 (han integer), thepp=4N+ 1 =&+ 5. Inthe
following Table 1, the first seven such primesgnesented. The even valubk are taken
as the smallest possible values (iMin for which minM3 exceeds @ + 5p + 3) for
the first time, in order to achieve the smallestgible differenceM® — (20? + 5p + 3) =t
=2.

Table 1.
P=4N+1=&+5| *+5+3 | minM | min M3 | min M3— (p? + 5p + 3) =t

5 78 6 21€ 13€

13 40€ 8 51z 10€

29 183( 14 2744 914

37 292¢ 16 409¢ 117(

53 588¢ 20 800( 2114

61 775(C 20 800( 25C
101 2091( 28 2195: 1042

In Table 1, for each prime, the respective data is self-explanatory. Albeal minvi® —
(2p? + 5p + 3) =t are even. The smallest possible numbes equal to 106 and has 3
digits. If D denotes the number of digits of each numihethen D > 3. It is clearly seen
that D =1, i.e.,t=2 is never attained. We can now state that ssuraption is false
when N is odd.

The equation M+ 17 + (4N + 2) + (N + 3¥ =M2 has no solutions.

(7) Thecase 4+ 1F+ (4N + 2F + (4N + 3) =M3,
Rewriting in terms op the left side of the equation, we obtain
P+E+1F+(p+2)=2*+3Pp+3=(P*°+3Pp+1)+2

We shall assume that for some primg(2p? + 3p + 1) + 2 =M? and reach a contradiction.

The value &+ 3p+ 1) is even for all primep. Our assumption that 2+ 3p +
1) + 2 =M® implies that (B*+ 3p+ 1) +2,M are even, and®>— (p*’+3p+1)=2 is
the smallest possible difference of two consecugiven integers. We shall now consider
both possibilities of p=4N + 1, namelyN odd andN even.

DenoteM =2m. WhenN=2n+1, thenp=4N+ 1 =& + 5. Our assumption that
M3 — (2% + 3p+1) =2 yields
8mP— (2(8n+5)+3(8n+5)+1) = 8- (128+1841+66) = 8fr’— 167— 2 —8) — 2 = 2.

But, for all valuesm, n, 8(°— 1&n°>~ 23— 8) — 2+ 2. Thus, our assumption is false when
N is odd.

WhenN=2n is even,themp=4N+ 1 = & + 1. In the following Table 2, the first
seven such primes are presented. The even valueme taken as the smallest possible
values (minM) for which minM® exceeds (@ + 3p + 1) for the first time, in order to
achieve the smallest possible differerdé— (20> + 3p + 1) =t=2.
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Table 2.
P=4N+1=&+1| 2*°+3Pp+1| minM | min M3 | min M3— (> + 3p+1) =t
17 63C 10 100C 37C
41 348¢ 16 409¢ 61C
73 1087¢ 24 1382« 294¢
89 1611( 26 1757¢ 146¢
97 1911( 28 2195; 284:
11:c 2587¢ 30 2700( 1122
137 3795( 34 3930« 1354

In Table 2, the primes presented and the datarwutaire self-evident. All values ni?
— (2 + 3p + 1) =t are even. The smallest possible numbés equal to 370 and has 3
digits. If D denotes the number of digits of each numbethen D> 3. As p, min M
are increasing, so arepf2+ 3p + 1) and miM3. Hence, the valu® = 1, namelyt=2
which is one digit is never attained. Sincenhebers in Table 2 quite clearly indicate
this fact, we can therefore state that our assompx false wherlN is even.

The equation {4+ 1F + (4N + 2 + (4N + 3) =M3 has no solutions.

(8) Thecase M+ 1P+ (4N+ 2P+ (4N + 3Y =M3
The left side of the equation yields
(16N? + 8N + 1) + (16N% + 16N + 4) + (16N? + 24N + 9) = 2(24N° + 24N + 7).
The prime 2 has an odd exponent equal to 1eS{8dN? + 24N + 7) is odd for all values
N, it follows that 2(2#2 + 24N + 7) # M3,
The equation {4+ 1F + (4N + 2¢ + (4N + 3¥ = M?® has no solutions.

This concludes the proof of Theorem 3.1. o

4. All the solutions of p*+ (p+ 1) + (p + 2f=M2 when p=4N + 3, 1<X,y,z<2
In this section we considep*+ (p+ 1) + (p + 2f=M?3 when 1<x,y,z<2, and
p=4N+ 3.

Theorem 4.1. Let 1<X,y, z< 2. Suppose that= 4N + 3. Thenp*+ (p + 1) + (p + 2¥
=M? has: (i) Infinitely many solutions whex=y =z= 1. (ii) No solutions for all other
possibilities.

Proof: When I<x,y,z<2 and p=4N + 3 is prime,eight cases exist:

(1) (4N+3) + (@AN+4) + (4N+5 = M
(2) (4N+3) + (@AN+4) + (AN+5¢ = M.
(3) (4N+3) + (4N+42 + (4N+5 = M
4) AN+32 + (@AN+4) + (AN+5 = M.
(5) (4N+3) + (4N+42 + (AN+5¢F = M
(6) (AN+3¢ + (4N+4) + (4N+57 = M
(7) (AN+3? + (AN+47? + (4N+5 = M
(8) (AN+32 + (AN+47 + (@N+57 = M.

11
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Each case is considered separately, and is setifticed.
(1) Thecase(dN+3) + (N +4) + (N+5) = M3,
The left side of the equation yields
@AN+3)+(N+4)+(N+5)=1N+12=120N+1).

The factor 12=23. If 12N+ 1) = M3, it then follows thatN+ 1) is of the form
N+1=2+232+3.K3 wherea>0, b>0 andK>1 are integers. Evidentl\ + 1 is
always a multiple of 18. The valug = 21 **32*®.K3 _ 1 must satisfy

N4 3=4(2*2R*P.K3-1)+3 . (1)

Some examples satisfying (1) which are solutiohthe equation are demonstrated as
follows:

Examplel If a=0, b=0, K=1, ther N=17 p=71 M= 6.
Examplez If a=1, b=1 K=1, ther N=3887 p=15551 M=36
Example3. If a=1, b=0 K=5 ther N=17999 p=71999 M=60

Certainly, there exist infinitely many values b, K for which (1) is prime.
The equation {4+ 3) + (N + 4) + (N +5) = M3 has infinitely many solutions.

(2) The case(4N + 3) + (AN + 4) + (N + 5¢ = M3,
The left side of the equation yields

(AN + 3) + (AN + 4) + (1682 + 40N + 25) = 1602+ 3N + 2) = 16N + 1)(N + 2). 2
We shall assume that for some valNg 16(N + 1)(N + 2) =M? and reach a contradiction.

The factorsN + 1), N+ 2) are two consecutive integers. Thereforbgeit(N + 1)
is even and N + 2) is odd or vice versa. Without any loss diegality, we shall assume
that (N + 1) is even, andN(+ 2) is odd. Observe that if the even valiee+(1) is not a
multiple of 4, then sinceN(+ 2) is odd, it follows that 18(+ 1)(N + 2) # M3 contrary
to our assumption. Therefore, by (2) and ounmgdion we have

N+1=48 N+2=4°+1=Q%  44A)4A*+1)=M?

where A assumes odd and even values, gnis odd. We also note that the above values
N+ 1 andN+ 2 must be satisfied simultaneously.

We will now show that A + 1 =Q° or Q°—4A% =1 is never achieved. In the
following Table 3 we consider the first 10 wduA. The valuesQ are taken as the
smallest possible value® denoted by mii®, for which minQ® exceeds A&4° for the
first time in order to achieve the smallest possitifferenceQ® — 4A3 =t.

In Table 3, the numbes,Q and the data obtained present a clear-cut vietw as
the behavior of the equality m@®® — 4A° =t. The smallest possible numberis t = 17.
As A,Q are increasing, so dods All numberst in Table 3 consist of two and three
digits. Evidently, the smallest one digit numbdrieh is equal to 1 is never attained.
This implies that our assumption is false.

12
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Table 3.
A A3 4A3 minQ | min Q% | min Q- 4A%=t
1 1 4 3 27 23
2 8 32 5 12¢ 93
3 27 10¢€ 5 12t 17
4 64 25€ 7 34: 87
5 12t 50C 9 72¢ 22¢
6 21¢€ 864 11 1331 467
7 34: 1372 13 219i 82t
8 51z 204¢ 13 219i 14¢
9 72¢ 291¢ 15 337¢ 45¢
1C 100( 400( 17 491z 913

The equation {4+ 3) + (N + 4) + (N + 5F = M3 has no solutions.

(3) Thecase M+ 3)+ (N+4F+ (AN+5) =M.
The left side of the equation yields
(AN + 3) + (16N + 3N + 16) + (AN + 5) = 8(N? + 5N + 3) = 8N + 1)(2N + 3). 3)
We shall assume that for some valde 8(N + 1)(2N + 3) =M3 has a solution and reach
a contradiction. The sumN2+ 3 =2+ 1) + 1, and gcd+ 1, 2N+ 1)+ 1) =1. This
fact together with our assumption imply that (Bust simultaneously satisfy the equalities
N+ 1=A3 N+3=2N+1)+1=23+1=B° a%B = M3,
We will now show that
203 +v =B® v>1 4)
is false whenv = 1.

In order to achieve the smallest possibleevas in (4), we consider the largest
possible valueA so that the differenc&® — 2A° yields the smallest possible value Set
A=B- 1. Itis easily seen wheA = 1, 2, 3, thatB = 2, 3, 4, and that the respective
numbersy yield v=6, 11, 10. For all valued>4 andB=A+ 1, therB*- 2A*=v <.
Thus, the differenceB® — 2A3 =v =1 is never attained. This implies that our agsion
is false.

The equation (+ 3) + (N + 4¢ + (4N + 5) = M® has no solutions.

(4) Thecase M+ 3F+ (AN +4)+ (N+5) =M
The left side of the equation yields
(16N?2 + 24N+ 9) + (AN + 4) + (AN +5) = 2(8\? + 16N + 9).
The prime 2 has an odd exponent equal to 1.fadter (8\>+ 16N + 9) is odd for all
values N. It therefore follows that 2(& + 16N + 9)# M®.
The equation {4+ 3¢+ (4N + 4) + (AN +5) = M® has no solutions.

(5) Thecase M+ 3)+ (&N +4Y+ (4N + 57 = M3,

Rewriting in terms op the left side of the equation yields

pr(F+D+1)+ P+ Ap+a) =D+ S,

13
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We shall assume that for some primpe 20> + 7p + 5 = M® has a solution and reach a
contradiction.

The value 2+ 7p+ 5= (? + 7p + 4) + 1 =M® implies that M® is even for all
primes p, and 2?+ 7p + 4 is odd. In the following Table 4 we considee first ten
primes p. The valuesM are taken as the smallest possible vaMeslenoted by miM,
for which minM?® exceeds (@ + 7p + 4) for the first time in order to obtain the alfast
possible difference miv® — (2% + 7p + 4) =t. We will now show thatt = 1 is not
achieved.

Table 4.

P=4N+3 | 2p?+7p+4 | minM | min M® | min M3— (2p%+ 7p + 4) =t
3 43 4 64 21
7 151 6 21€ 65
11 32: 8 512 18¢
19 85¢ 10 100( 141
23 1227 12 172¢ 50t
31 214: 14 2744 601
43 400z 16 409¢ 93
47 475] 18 5832 1081
59 737¢ 20 800( 621
67 9451 22 1064¢ 119

In Table 4, the primep, 20+ 7p + 4, minM are increasing numbers. The numbers
decisively show thatt = 21 is the smallest possible number. The numdikr has two
digits. The other numbers consist of 2, 3 and 4 digits. The smallesssible number
t =1 with one digit is never attained. Our asstiompis therefore false.

The equation M+ 3) + (AN + 4F + (4N + 5¢ = M3 has no solutions.

(6) Thecase (M+3F+ (4N+4) + (N +5¢ = M3,
The left side of the equation yields
(16N? + 24N + 9) + (AN + 4) + (16N + 40N + 25) = 2(16J% + 34N + 19).
The prime 2 has an odd exponent equal to 1,trenéactor (18 + 34N + 19) is odd
for all valuesN. Hence 2(182+ 34N + 19)# M3,
The equation M+ 3¢ + (4N + 4) + (AN + 5¢ = M® has no solutions.

(7) Thecase (M+ 3F+ (4N + 47 + (4N + 5) =M5.
The left side of the equation yields
(16N? + 24N + 9) + (16N + 32N + 16) + (AN + 5) = 2(16\? + 30N + 15).
The prime 2 has an odd exponent equal to 1,trenéactor (187 + 30N + 15) is odd
for all valuesN. Thus 2(16F + 30N + 15)# M3,
The equation {4+ 3F + (4N + 4 + (4N + 5) =M3 has no solutions.

(8) Thecase M+ 3F+ (4N + 4 + (4N + 57 = M5,

The left side of the equation yields
(16N? + 24N + 9) + (16\N2+ 32N + 16) + (1N°+ 40N + 25) = 2(24? + 48N + 25).

14
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The prime 2 has an odd exponent equal to 1, thadfactor (2K + 48\ + 25) is odd
for all valuesN. Therefore 2(2M? + 48N + 25)# M3,
The equation {4+ 3F + (4N + 4Y + (4N + 57 = M® has no solutions.

This concludes the proof of Theorem 4.1. o

Final remark. In this paper, we have considered the equatiphs (p+ 1) + (p + 2 =
M3 in which M is a positive integerp is prime andp, (p + 1), @ + 2) are three
consecutive integers. For all primes> 2 andx,y, z satisfying 1<x, vy, z< 2, we have
established all the solutions of the above equstion
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