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Abstract. In this article, a new idea of m-bipolar fuzzy graph (m-BPFG) is initiated. 
Further, degree of an edge and total degree of an edge are defined and also determined 
necessary and sufficient condition under which edge regular m-BPFG and totally edge 
regular m-BPFG are equivalent.  
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1. Introduction 
Fuzzy sets are introduced for the parameters to solve problems related to vague and 
uncertain in real life situations were given by Zadeh [12] in 1965. The limitations of 
traditional model were overcome by the introduction of bipolar fuzzy set concept in 1994 
by Zhang [13]. This was further improved by Chen et al. [4] to m-polar fuzzy set theory.  

Free body diagrams using set of nodes connected by lines representing pairs are good 
problem solving tools in non-deterministic real life situations. Thus, Rosenfeld [10] first 
initiated the fuzzy graphs by taking fuzzy relations on fuzzy sets in 1975.  Akram [1] 
introduced the notion of bipolar fuzzy graphs and studied some isomorphic properties on 
it. Pal and Rashmanlou [7] studied irregular interval-valued fuzzy graphs and several of 
their classifications. Rashmanlou et al. [11] studied categorical properties of bipolar 
fuzzy graphs. Radha and Kumarvel [9] initiated the notion of edge regular bipolar fuzzy 
graphs. Ghorai and Pal [5, 6] introduced generalized m-polar fuzzy graphs and studied 
some isomorphic properties and density of an m-polar fuzzy graph. Banasode and 
Umathar [2] introduced minimum total edge dominating energy of a graph. Bera and pal 
[3] introduced the concept of m-polar interval-valued fuzzy graph and studied the 
algebraic properties like density, regularity and irregularity etc. on m-PIVFG. Pal et al. 
[8] studied intersection graphs and provides tools for applying fuzzy mathematics and 
graph theory to real world problems.  
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This paper attempts to develop theory to analyze parameters combining concepts 
from m-polar fuzzy graphs and bipolar fuzzy graphs as a unique effort. The resultant 
graph is turned to m-BPFG and studied properties on it. 

 
2. Preliminaries 
In this section, basic terminologies of bipolar fuzzy graph (BPFG) and m-polar fuzzy 
graph (m-PFG) are studied.  

 

For a given set ,V  define an equivalence relation ↔  on ( ){ }, :V V k k k V× − ∈  as 

follows: ( ) ( )1 1 2 2, ,k l k l↔ ⇔ either ( ) ( )1 1 2 2, ,k l k l=
 
or 1 2 1 2, .k l l k= =  The quotient 

set got in this way is denoted by
 

2.V
sur

  
 

Definition 2.1. A bipolar fuzzy graph of a graph 
 

( )* ,G V E=
 
is a pair ( ), ,G V S T=

 
where  ,p n

S SS ψ ψ =    is a bipolar fuzzy set in V and ,p n
T TT ψ ψ =   is a bipolar fuzzy 

relation on 2V
sur

 such that ( ) ( ) ( ){ }, min , ,p p p
T S Ss t s tψ ψ ψ≤ ( ),n

T s tψ ≥

( ) ( ){ }max ,n n
S Ss tψ ψ  for all ( ) 2,s t V∈

sur

 and ( ) ( ), , 0p n
T Ts t s tψ ψ= =  for all 

( ) 2, .s t V E∈ −
sur

 
 
 

 

Definition 2.2. An m-polar fuzzy graph of a graph  ( )* ,G V E=  is a pair
 

( ), ,G V S T=  where [ ]: 0, 1
m

S V →  is an m-polar fuzzy set in V and 

[ ]2: 0, 1
m

T V →
sur

 is an m-polar fuzzy set in 2V
sur

 such that 

( ) ( ) ( ){ }, min ,j j jp T s t p S s p S t≤o o o   for all ( ) 2, , 1, 2, ,s t V j m∈ =
sur

L  and 

( ), 0, 0, , 0T s t = L  for all ( ) ( )2, .s t V E∈ −
sur

 Here,
 

( )jp S so
 
and ( ),jp T s to  

represents the thj  component of the degree of membership value of the vertex ‘s ’ and 

the edge ‘( ),s t ’ . 

 
3. Regularity on m-bipolar fuzzy graphs 
All the vertices and edges of an m-polar fuzzy graph have m  components and those 
components are fixed. But these components may be bipolar. Using this idea, m-BPFG 
has been introduced. Before defining m-bipolar fuzzy graph, we assume the following:  

Definition 3.1. An m-bipolar fuzzy set (m-BPFS) S  on V  is defined by  

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 1 2 2, , , , , ,p n p n p n
S S S S m S m SS s p s p s p s p s p s p sψ ψ ψ ψ ψ ψ     =      o o o o L o o
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for all s V∈  or shortly                      ( ) ( ) ( ){ }1
,

mp n
j S j S j

S s p s p s s Vψ ψ
=

 = ∈ o o    

where the functions [ ]: 0, 1p
j Sp Vψ →o  and  [ ]: 1, 0n

j Sp Vψ → −o
 
denote the positive 

memberships and negative memberships of the element respectively.  
 
Definition  3.2. Let  S  be an m-BPFS on a set .V  An m-bipolar fuzzy relation on a set 
S  is an m-BPFS   T  

of ,V V×   

( ) ( ) ( ){ 1 1, , , , ,p n
T TT s t p s t p s tψ ψ =  o o ( ) ( )2 2, , , ,p n

T Tp s t p s tψ ψ  o o ,L

( ) ( ) }, , ,p n
m T m Tp s t p s tψ ψ  o o   

for all ,s t V∈
 

or shortly ( ) ( ) ( ){ }1
, , , , ,

mp n
j T j T j

T s t p s t p s t s t Vψ ψ
=

 = ∈ o o   such that 

( ) ( ) ( ){ }, min , ,p p p
j T j S j Sp s t p s p tψ ψ ψ≤o o o  ( ) ( ) ( ){ }, max , ,n n n

j T j S j Sp s t p s p tψ ψ ψ≥o o o  

for every 1, 2, ,j m= L  and , .s t V∈      

Definition 3.3. An m-bipolar fuzzy graph (m-BPFG) of a graph ( )* ,G V E=  is a pair 

( , , )G V S T=  where [ ]
1

, , : 0, 1
mp n p

j S j S j Sj
S= p p p Vψ ψ ψ

=
  → o o o  and [ ]: 1, 0n

j Sp Vψ → −o
 

is an m-BPFS on ;V  and 
1

, ,
mp n

j T j T j
T p pψ ψ

=
 =  o o  [ ]2: 0, 1p

j Tp Vψ →
sur

o and 

[ ]2: 1, 0n
j Tp Vψ → −

sur

o
 
is an m-BPFS in 2V

sur

 such that  

( ) ( ) ( ){ }, min , ,p p p
j T j S j Sp k l p k p lψ ψ ψ≤o o o ( ),n

j Tp k lψ ≥o ( ) ( ){ }max ,n n
j S j Sp k p lψ ψo o   

for all ( ) 2, ,k l V∈
sur

1, 2, ,j m= L  and ( ) ( ), , 0p n
j T j Tp k l p k lψ ψ= =o o  for all   

( ) 2, .k l V E∈ −
sur

 

Example 3.1.  An example of a 3-BPFG is as shown in Figure 1.  

 
Figure 1: 3-Bipolar fuzzy graph G  
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Definition 3.4. The degree of a vertex r  in an m-BPFG ( ), ,G V S T=  of ( )* ,G V E=
 
is 

( ) ( ) ( )
1

,
mp n

G j G j G j
d r p d r p d r

=
 =  o o  where ( ) ( )

( ),

,p p
j G j T

r s
r s E

p d r p r sψ
≠

∈

= o o  and ( )n
j Gp d r =o  

( )
( ),

, .n
j T

r s
r s E

p r sψ
≠

∈

 o  

 

Definition 3.5. The degree of an edge ( ),r s E∈  in an m-BPFG ( ), ,G V S T=  of 

( )* ,G V E=
 
is ( ) ( ) ( )

1
, , , ,

mp n
G j G j G j

d r s p d r s p d r s
=

 =  o o  where 

( ) ( ) ( ) ( ), 2 , ,p p p p
j G j G j G j Tp d r s p d r p d s p r sψ= + −o o o o  

( ) ( ) ( ) ( ), 2 , .n n n n
j G j G j G j Tp d r s p d r p d s p r sψ= + −o o o o  

 

Definition 3.6. The total degree of an edge  ( ),r s E∈  in an m-BPFG ( ), ,G V S T=  

of ( )* ,G V E= is ( ) ( ) ( )
1

, , , ,
mp n

G j G j G j
td r s p td r s p td r s

=
 =  o o  where 

( ) ( ) ( ) ( ), , ,p p p p
j G j G j G j Tp td r s p d r p d s p r sψ= + −o o o o  

( ) ( ) ( ) ( ), , .n n n n
j G j G j G j Tp td r s p d r p d s p r sψ= + −o o o o  

 

Definition 3.7. If each vertex of an m-BPFG  ( ), ,G V S T=  of ( )* ,G V E=
 
is having 

the same degree 
1

,
mp n

j j j
δ δ

=
    , then G  is called regular m-BPFG.   

 

Definition 3.8. If each edge of an m-BPFG  ( ), ,G V S T=  of ( )* ,G V E=  is having 

the same degree 
1

,
mp n

j j j
δ δ

=
    , then G  is called an edge regular m-BPFG. 

 

Definition 3.9. If each edge of an m-BPFG  ( ), ,G V S T=  of ( )* ,G V E=  is having 

the same total degree 
1

,
mp n

j j j
δ δ

=
    , then G  is called totally edge regular m-BPFG.  

 

Theorem 3.1.  Let ( ), ,G V S T=
 
be an m-BPFG on a cycle ( )* ,G V E= . Then

( ) ( )
( ), ,

, .
l l k

G l G l k
V E l k

d d
ν ν ν

ν ν ν
∈ ∈ ≠

=   
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Proof: Suppose that ( ), ,G V S T=
 
is an m-BPFG and *G is a cycle  1 2 3 1tν ν ν ν νL .  

Then ( ) ( ) ( )1 1 1
1 1 1 1

, , , ,
mt t t

p n
G l l j G l l j G l l

l l l j

d p d p dν ν ν ν ν ν+ + +
= = = =

 =  
 

  o o  

Now for 1, 2, ,j m= L   

( ) ( ) ( ) ( )1 1 2 2 3 1
1

, , , ,
t

p p p p
j G l l j G j G j G t

l

p d p d p d p dν ν ν ν ν ν ν ν+
=

= + + + o o o L o

  
where 1 1tν ν+ =   

( ) ( ) ( ) ( ) ( )1 2 1 2 2 32 ,p p p p p
j G j G j T j G j Gp d p d p p d p dν ν ψ ν ν ν ν= + − + +o o o o o

( ) ( ) ( ) ( )2 3 1 12 , 2 ,p p p p
j T j G t j G j T tp p d p d pψ ν ν ν ν ψ ν ν− + + + −o L o o o

( ) ( )1
1

2 2 ,
l

t
p p

j G l j T l l
V l

p d p
ν

ν ψ ν ν +
∈ =

= − o o

( ) ( ) ( )1
1

2 ,
l l

t
p p p

j G l j G l j T l l
V V l

p d p d p
ν ν

ν ν ψ ν ν +
∈ ∈ =

= + −  o o o

( ) ( ) ( ) ( )1 1
1 1

2 , 2 , .
l l

t t
p p p p

j G l j T l l j T l l j G l
V l l V

p d p p p d
ν ν

ν ψ ν ν ψ ν ν ν+ +
∈ = = ∈

= + − =   o o o o

 

Similarly, ( ) ( )1
1

,
l

t
n n

j G l l j G l
l V

p d p d
ν

ν ν ν+
= ∈

= o o . Hence, ( ) ( )
( ), ,

, .
l l k

G l G l k
V E l k

d d
ν ν ν

ν ν ν
∈ ∈ ≠

= 
 

 

Remark 3.1. Let ( ), ,G V S T=  be an m-BPFG on ( )* ,G V E= .  Then 

( ) ( ) ( )
( )

( ) ( )
( )( )

* *
, , ,

1

, , , , , ,
l k l k l k

m

p n
G l k G l k j T l k G l k j T l k

E E E
j

d d p d p
ν ν ν ν ν ν

ν ν ν ν ψ ν ν ν ν ψ ν ν
∈ ∈ ∈ =

 
=  

  
  o o

 

where  ( ) ( ) ( )* * *, 2G l k G l G kd d dν ν ν ν= + − for all ( ), .l k Eν ν ∈  

 

Theorem 3.2.  Let ( ), ,G V S T= be an m-BPFG on a c -regular graph ( )* ,G V E= .  

Then ( ) ( ) ( )
( ),

, 1 .
l k l

G l k G l
E V

d c d
ν ν ν

ν ν ν
∈ ∈

= − 
 

Proof: From Remark 3.1., we have 

( ) ( ) ( )
( )

( ) ( )
( )( )

* *
, , ,

1

, , , , , ,
l k l k l k

m

p n
G l k G l k j T l k G l k j T l k

E E E
j

d d p d p
ν ν ν ν ν ν

ν ν ν ν ψ ν ν ν ν ψ ν ν
∈ ∈ ∈ =

 
=  

  
  o o

( ) ( ) ( )
( )

( ) ( ) ( )
( )

* * * *
, ,

1

( 2) , , ( 2) , .
l k l k

m

p n
G l G k j T l k G l G k j T l k

E E
j

d d p d d p
ν ν ν ν

ν ν ψ ν ν ν ν ψ ν ν
∈ ∈ =

 
= + − + − 
  
 o o

 



Ramakrishna Mankena, T.V.Pradeep Kumar, Ch.Ramprasad and J.Vijaya Kumar 

32 
  

Since *G  is a regular graph, we have the degree of every vertex in *G  is .c   So 

( ) ( ) ( )
( )

( )
( )( ), , ,

1

, 2 , , ,
l k l k l k

m

p n
G l k j T l k j T l k

E E E
j

d c c p p
ν ν ν ν ν ν

ν ν ψ ν ν ψ ν ν
∈ ∈ ∈ =

 
= + −  

  
  o o

( ) ( )
( )

( )
( )

( )
( ), , ,

1

, 2 1 , , ,
l k l k l k

m

p n
G l k j T l k j T l k

E E E
j

d c p p
ν ν ν ν ν ν

ν ν ψ ν ν ψ ν ν
∈ ∈ ∈ =

 
= −  

  
  o o

( ) ( ) ( )
( ),

, 1 .
l k l

G l k G l
E V

d c d
ν ν ν

ν ν ν
∈ ∈

= − 
 

 

Theorem 3.3. Let ( ), ,G V S T=
 
be an m-BPFG on a crisp graph ( )* ,G V E= . Then, 

( ) ( ) ( )
( )

( ) ( )
( )( )

* *
, , ,

1

, , , , , ,
l k l k l k

m

p n
G l k G l k j T l k G l k j T l k

E E E
j

td d p d p
ν ν ν ν ν ν

ν ν ν ν ψ ν ν ν ν ψ ν ν
∈ ∈ ∈ =

 
= + 

  
  o o

( ) ( )
( ) 1

,

, , ,
l k

mp n
j T l k j T l k j

E

p p
ν ν

ψ ν ν ψ ν ν
=

∈

   o o .

 
Proof: From the definition of total edge degree, we have 

( )
( )

( ) ( ) ( )( )
( ) 1

, ,

, , , , ,
l k l k

mp n
G l k G l k j T l k j T l k j

E E

td d p p
ν ν ν ν

ν ν ν ν ψ ν ν ψ ν ν
=

∈ ∈

 = +    o o

( )
( )

( ) ( )
( ) 1

, ,

, , , ,
l k l k

mp n
G l k j T l k j T l k j

E E

d p p
ν ν ν ν

ν ν ψ ν ν ψ ν ν
=

∈ ∈

 = +    o o

 
From Remark 3.1., we have 

( ) ( ) ( )
( )

( ) ( )
( )( )

* *
, , ,

1

, , , , , ,
l k l k l k

m

p n
G l k G l k j T l k G l k j T l k

E E E
j

td d p d p
ν ν ν ν ν ν

ν ν ν ν ψ ν ν ν ν ψ ν ν
∈ ∈ ∈ =

 
= + 

  
  o o

( ) ( )
( ) 1

,

, , , .
l k

mp n
j T l k j T l k j

E

p p
ν ν

ψ ν ν ψ ν ν
=

∈

   o o

 

 

Theorem 3.4. Let ( ), ,G V S T= be an m-BPFG on a crisp graph ( )* ,G V E= .  Then 

1
,

mp n
j T j T j

T p pψ ψ
=

 =  o o  is a constant function if and only if the subsequent conditions 

are equivalent: 
(i) G is an edge regular  m-BPFG . 
(ii) G is a totally edge regular  m-BPFG . 
Proof:  Let us suppose that T  be a constant function. 

 Then ( ) ( )
1 1

, , , ,
m mp n p n

j T j T j jj j
p pψ α β ψ α β γ γ

= =
   =   o o

 
for all ( ), ,Eα β ∈

 
where  
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[ ] [ ]0, 1 , 1, 0 .p n
j jγ γ∈ ∈ −  Let G  be an edge regular m-BPFG. Then for all ( ), ,l Eγν ν ∈

 

( )
1

, , .
mp n

G l j j j
d γν ν δ δ

=
 =     Now we prove that G  is a totally edge regular m-BPFG.   

Now  

( ) ( ) ( ) ( )
1

, , , , ,
m

p n
G l G l j T l j T l

j
td d p v p vγ γ γ γν ν ν ν ψ ν ψ ν

=
 = +  o o

         

1 1
, ,

m mp n p n
j j j jj j

δ δ γ γ
= =

   = +    1
,

mp p n n
j j j j j

δ γ δ γ
=

 = + +   for all ( ), .l Eγν ν ∈
 
Then 

G  is a totally edge regular m-BPFG.   

Now, let G  be a 
1

,
mp n

j j j
h h

=
    totally edge regular m-BPFG.  

Then ( )
1

, ,
mp n

G l j j j
td h hγν ν

=
 =    

 for all ( ), .l Eγν ν ∈  So, we have 

( ) ( ) ( ) ( )
11

, , , , , ,
m mp n p n

G l G l j T l j T l j j jj
td d p v p v h hγ γ γ γν ν ν ν ψ ν ψ ν

==
   = + =   o o . 

Hence, ( ) ( ) ( )
1 1

, , , , ,
mmp n p n

G l j j j T l j T lj j
d h h p v p vγ γ γν ν ψ ν ψ ν

= =
  = −   o o

1
,

mp p n n
j j j j j

h hγ γ
=

 = − − 
 
for all ( ), .l Eγν ν ∈ Then G  is an  

1
,

mp p n n
j j j j j

h hγ γ
=

 − −   

-edge regular m-BPFG.  
Conversely, we assume that conditions (i) and (ii) are equivalent. Now we have 

to show that the function T is constant. In a contrary way suppose that, the function T is 

not constant.  Then ( ) ( )
1

, , ,
m

p n
j T l j T l

j
p v p vγ γψ ν ψ ν

=
  ≠ o o

 ( ) ( )
1

, , ,
mp n

j T s j T s j
p pδ δψ ν ν ψ ν ν

=
  o o  

for at least one pair of edges ( ), ,l γν ν ( ), sδν ν .E∈  Let G  be a 
1

,
mp n

j j j
δ δ

=
    -edge 

regular m-BPFG. Then ( ) ( )
1

, , ,
mp n

G l G s j j j
d dγ δν ν ν ν δ δ

=
 = =   . Then for ( ), ,l γν ν

 

( ), ,s Eδν ν ∈ we have ( ) ( ) ( ) ( )
1

, , , , ,
m

p n
G l G l j T l j T l

j
td d p v p vγ γ γ γν ν ν ν ψ ν ψ ν

=
 = +  o o

( ) ( )
1 1

, , , ,
mmp n p n

j j j T l j T lj j
p v p vγ γδ δ ψ ν ψ ν

= =
  = +   o o and

( ) ( ) ( ) ( )
1

, , , , ,
mp n

G s G s j T s j T s j
td d v p pδ δ δ δν ν ν ψ ν ν ψ ν ν

=
 = +  o o

( ) ( )
1 1

, , , , .
m mp n p n

j j j T s j T sj j
p pδ δδ δ ψ ν ν ψ ν ν

= =
   = +   o o

  
Since 

( ) ( ) ( ) ( )
11

, , , , , , ,
m mp n p n

j T l j T l j T s j T s jj
p v p v p pγ γ δ δψ ν ψ ν ψ ν ν ψ ν ν

==
   ≠   o o o o  
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we have ( ) ( ), ,G l G std tdγ δν ν ν ν≠ . HenceG  is not a totally edge regular m-BPFG.      

This is a contradiction to our assumption and so that the function T is constant.  
Similarly, we can show that the function T  is constant, when G  is a totally edge 

regular m-BPFG. 
 

Theorem 3.5. Let ( )* ,G V E=  be a h-regular crisp graph and ( ), ,G V S T= be an m-

BPFG on *.G Then, the function 1
,

mp n
j T j T j

T p pψ ψ
=

 =  o o  is constant if and only if G  

is both regular m-BPFG and totally edge regular m-BPFG . 

Proof: Let T be a constant function. Then ( ) ( )
1 1

, , , ,
m mp n p n

j T j T j jj j
p pψ α β ψ α β γ γ

= =
   =   o o  

for all ( ), Eα β ∈  where p
jγ  and n

jγ  are constants. From the definition of degree of a 

vertex, we get  

( ) ( )
( )

( )
( ) ( ) ( ), , , ,

1 1

, , , ,
l l l l

l l l l

m m

p n p n
G l j T l j T l j j

E E E E
j j

d p p
γ γ γ γ

γ γ γ γ

γ γ
ν ν ν ν ν ν ν ν

ν ν ν ν ν ν ν ν

ν ψ ν ν ψ ν ν γ γ
≠ ≠ ≠ ≠

∈ ∈ ∈ ∈
= =

   
   

= =   
   
   

   o o

1
,

mp n
j j j

h hγ γ
=

 =    
for all l Vν ∈ .  So ( )

1
,

mp n
G l j j j

d h hν γ γ
=

 =    for all l Vν ∈ .  

Therefore, G  is a regular m-BPFG. 
Again,  

( ) ( )
( )

( )
( ), ,

1

, , , ,

l z l z

m

p n
G l j T l z j T l z

z z
E E

j

td p pγ
γ γ

ν ν ν ν

ν ν ψ ν ν ψ ν ν
≠ ≠

∈ ∈ =

 
 = + 
  

 o o

( )
( )

( )
( )

( ) ( )
1

, ,
1

, , , , , ,

z z

m

m
p n p n

j T z j T z j T l j T l
j

z l z l
E E

j

p p p p

γ γ

γ γ γ γ

ν ν ν ν

ψ ν ν ψ ν ν ψ ν ν ψ ν ν
=≠ ≠

∈ ∈
=

 
 

 +   
 
 

 o o o o  

( ) ( )
1 1 1

, ,

, , ,

l z z

m m mp n p n p n
j j j j j jj j j

z z l
E Eγ

γ
ν ν ν ν

γ γ γ γ γ γ
= = =

≠ ≠
∈ ∈

     = + +      
 

( ) ( )
1 1 1

1 , 1 , ,
m m mp n p n p n

j j j j j jj j j
h hγ γ γ γ γ γ

= = =
     = − + − +       

1
(2 1) ,

mp n
j j j

h γ γ
=

 = −    for all ( ), .l Eγν ν ∈  
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Conversely, assume that G  is both regular and totally edge regular m-BPFG. 
Now we have to prove that T  is a constant function. SinceG is regular, 

( )
1

,
mp n

G l j j j
d z zν

=
 =    

for all l Vν ∈ . AlsoG  is totally edge regular. Hence, 

( )
1

, ,
mp n

G l j j j
td h hγν ν

=
 =     

for all( ),l Eγν ν ∈ . From the definition of totally edge 

degree, we get ( ) ( ) ( ) ( ) ( )
1 1

, , ,
mmp n p n

G l j G l j G l j G j Gj j
td p d p d p d p dγ γ γν ν ν ν ν ν

= =
  = +   o o o o

 

( ) ( )
1

, , ,
m

p n
j T l j T l

j
p pγ γψ ν ν ψ ν ν

=
 −  o o

 
for all ( ), .l Eγν ν ∈

 

( ) ( )
1 1 1 1

, , , , , , ,
mm m mp n p n p n p n

j j j j j j j T l j T lj j j j
h h z z z z p pγ γψ ν ν ψ ν ν

= = = =
      = + −       o o

( ) ( )
1 1 11

, , , 2 , , 2 ,2
m m m mp n p n p n p p n n

j T l j T l j j j j j j j jj j jj
p p z z h h z h z hγ γψ ν ν ψ ν ν

= = ==
       = − = − −      o o

 

for all ( ), .l Eγν ν ∈
  
Hence T is a constant function. 

 
4. Conclusions 
In this article, edge degree and total edge degree of an m-BPFG are defined. Further, an 
equivalence condition for edge regular m-BPFG and totally edge regular m-BPFG is 
given. In future we intend to extend our work to density of m-BPFG and morphism 
between two m-BPFGs and study some of its properties. 
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