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Abstract. The present article establishes the mathematical description of turbulence for 
incompressible fluids as a response to an important question: “Is a complete mathematical 
description of turbulence possible?” in ResearchGate.net website discussion started August 26, 
2018.  Since inhomogeneous turbulence is too complex, this article will limit the discussion to 
homogeneous turbulence. This article provides the necessary propositions for a mathematical 
description of homogeneous turbulence for incompressible fluids which is achievable via a 
probabilistic formulation, deterministic chaos, and the Kolmogorov’s -5/3 law. 
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1. Introduction 
Dr. Ilya M. Peshkov asked an important question: “Is a complete mathematical description of 
turbulence possible?” in ResearchGate.net website discussion started August 26, 2018 [1].  This 
article will limit the mathematical description to homogeneous turbulence since the complexity of 
inhomogeneous turbulence is dependent on the particular physical process generating the fluid 
inhomogeneous turbulence and its quite complex.    
 Additionally, it is conjectured the Navier-Stokes’s momentum equation form a Lotka-

Volterra system from the perspective of Sir Oliver Heaviside’s operational calculus used in 

diffusion of electric displacement [11].  Sir Oliver Heaviside defined and used the generalize 

functions such as unit step, and the so-called Dirac delta function prior it was fashionable.  

He invented operational calculus back in the 19th century [11].   

 The Lotka-Volterra system representation of the Navier Stokes momentum equations 

compares the component velocities as if they were preys (3 different types of sheep 

populations) competing for part of the fluid energy (grass) since in this case there is no 

predator.  An alternative point of view to Navier Stokes momentum interpretation would be 

a matrix Riccati equation but this would not be pursued in this article.  The next section 

discusses the propositions for the mathematical description of incompressible fluid 

homogeneous turbulence. 
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2. Propositions for the mathematical description of incompressible fluid homogeneous 
turbulence 
The following propositions may establish a mathematical description of homogeneous turbulence 
for incompressible fluids via the following:  

1) The turbulence modelled by of the Navier-Stokes’s momentum equations means 
that the actual realizable Navier Stokes momentum equation solution is of a 
probabilistic formulation [3,6].  

2) The non-linear advective flow within the momentum Navier-Stokes’s momentum 
equation is conjectured to form a Lotka-Volterra system of equations for the fluid 
velocity field, which provides a deterministic view to the chaotic vortices of 
turbulence [8, 9, 10].   

3) The homogeneous turbulence power spectrum (or Spectrum), ����, due to the 
fluid’s spatial mean kinetic energy per unit mass, is given by Kolmogorov’s -5/3 
Law [7] within the inertial range of the fluid 

���� ∝  �	

���


 
where � is the ensemble mean kinetic energy per unit mass dissipation rate and � 
is the wavenumber. 

The three propositions listed above provide the complete mathematical description of 
homogeneous turbulence provided by the Navier-Stokes’s momentum equations.  These 
propositions one and three are well-known in the academic literature and there are too many 
literature references which expand this concept to be included in this article.  But a common 
literature point of view is the perspective in which randomness needs to be added to a 
deterministic mean flow, i.e., Reynolds’s equations which are said to model homogeneous 
turbulence using the deterministic Navier-Stokes’s equations. This linear additive idea or super 
position is not the perspective of this article since then the mathematical completeness of the 
nature of homogeneous turbulence is destroyed via the nonlinear advective property found in 
proposition number two above.  According to proposition one, the nature of homogeneous 
turbulence is built-in into the velocity field solution of the Navier-Stokes within a probability 
certainty which is analogous to the commonly known perspective of the probability of an electron 
might be located somewhere within a hydrogen atom as described by Quantum Theory Schroeder 
equation.  The proposition number two above implies the Navier-Stokes’s equation could be 
represented as a nonlinear Lotka-Volterra system of differential equations with time constant 

parameters operators.   The Laplacian operator, q� = Δ = ∑ ���� , and spatial gradient, �� = �
���

, 

are treated as scalars for a given dimension n with respect to partial time derivative operator as Sir 
Oliver Heaviside would have done.   
 ���

�� = ����� − � �������
− ��{� + !

"#
} 

The above Lotka-Volterra system of differential equations in time need to be solved as an integral 
equation which would involve the functional operators of the spatial derivatives along with the 
divergence of the velocity field which is zero, ∑ ���� = 0� .   
 
This perspective introduces the fluid velocity components taking part in a predator-prey type 
system in which each velocity component is a prey competing for homogeneous turbulence 
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energy and the homogeneous turbulence could be seen as a dynamic set, maybe a Mandelbrot 
fractal, developed by the nonlinear Lotka-Volterra system of differential equations.  This aspect 
of chaos introduces the vorticity nature of homogeneous turbulence which is not present in 
proposition one above.  Even if we could solve the nonlinear Lotka-Volterra system of 
“differential” equations it would yield an integral equation involving spatial operators as 
“parameters”.  Currently, the Navier-Stokes’s momentum equations full nontrivial solution 
remains unknown unless a simplifying assumption is made, for example zero initial conditions [3] 
which provides the linearizing condition,  ∑ ������� = 0.  A specialized solution of the Navier-
Stokes with zero initial conditions or null incompressible Navier Stokes equations given the input 
pressure and external forces are known has been solved in the reference article [3] shows the 
nature of the Greens function kernel (&'() − 1� is essentially related to the normal Gaussian 
distribution function. The exponential Laplacian operator, &'(), operating on some function is 
equivalent to the solution of the heat equation with the initial condition being the function, 
according to Professor Terence Tao in reference [5] in page 39.   By integrating by parts in the 
time integral specified in Theorem 1 of reference [3] and using the relationship provided by [5] to 
obtain the null velocity field in terms of Gaussian distribution expectations as shown below 

provided the null velocity solution, +�, satisfies ∑ +�
�,-
���� = 0.   
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Where H�/C, 0��C, 0#��1 is set to zero in Eq. 7 of reference [3] and 2�/C, 0��C, 0#��1 is given as 
follows: 

2�/C, 0��C, 0#��1 = I J �
�K�

F��K�� + !�K��
"#

GL −4K
47νN∑ �0��C, 0#�� − K� � ��

  

O�P�
 

Note that the units of 2� are in meter per second. The system is not closed because in reference 
[3] the mathematical assumption was made that the input pressure force was treated as a known 
mathematical input, i.e., the solution is given if the pressure function is known function of time 
and space which typically is not known.  An interesting feature of reference [3] in footnote #7 is a 
back of the envelope calculation which approximates the time scale validity, T=R2/v, of the 
solution as a function of a radius, R, and kinematic viscosity, v. The implication is that after that 
the time scale, T, the Navier-Stokes’s equation are not valid due to the singularity of the Laplace 
form of the kernel.  In order to extend the validity of the solution complex analysis may be use 
since this singularity is a simple pole, i.e., order one, which was not done in this article.   But this 
"not valid" interpretation is not the correct interpretation; the proper interpretation should be a 
loss of accuracy due to probabilistic interpretation instead of an invalid equation interpretation.  
Additionally, the incompressible Navier Stokes’s momentum equations can be integrated to 
obtain the Bernoulli equation or first integral as demonstrated in reference [2] to obtain the 
Bernoulli equation of the given flow field which is valid along a given stream lines of the fluid 
velocity field.  Reference [4] provides the Laplace equation of the classical Lagrangian, L, of the 
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incompressible fluid as an additional equation (Eq. 16 in [4]) which is valid for every instant of 
time.   For a fixed time, the Laplace equation of the classical Lagrangian could be solved with 
harmonic solutions which can be added up in space due to linearity of the Laplace equation, but 
not across time due to nonlinearity of the time field derivative or time material derivative in the 
incompressible Navier-Stokes’s momentum equations.   Since the external potential forces, 
��K��, are assumed to be harmonic, Δ� = 0, they can be eliminated from the Laplace equation 
without consequence and taking the ensemble mean, therefore the Laplace equation is given as 
νΔ�Q0.5�S� − !/"#U = 0 .1  By taking the ensemble mean within the inertial range and the spatial 
Fourier transform of the ensemble mean Laplace equation, < νΔ�Q0.5�S� − !/"#U >X�YYYY⃗ = 0, 
assuming the wavenumber, k, is nonzero this implies the power spectrum of the spatial mean 
potential energy per unit mass equals the power spectrum of the spatial mean kinetic energy per 
unit mass which is given by proposition three to be Kolmogorov -5/3 Law.   
 
3. Conclusion  
As long as the external conservative forces potential are not included since their Laplacian is 
zero, this article concludes the spectrum of the ensemble mean spatial fluid pressure per unit mass 

follows Kolmogorov’s -5/3 Law ∝ �	

���


 within the inertial range.  Additionally, in the articles 
[2,3,4] although do not actually mention turbulence directly, yet this does not imply that 
homogeneous turbulence does not exist within the Navier-Stokes’s momentum equation for 
Newtonian fluids.  This article concludes the Navier Stokes’s momentum equation can model 
homogeneous turbulence for Newtonian fluids and the Navier-Stokes’s equations need to be 
solved from a probabilistic and deterministic chaos point of view provided by the Lotka-Volterra 
system of equations.  Therefore, the incompressible Navier-Stokes’s equations have enough 
complexity and nonlinearity to be able to model Newtonian fluids in homogeneous turbulence 
state. 
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