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Abstract. The concepts of solvability in polynomials is higlitnperative, most especially
the concerned operations on the sums and the geodfithe roots. In this paper, an
analysis of the fundamentals and the basic chaizatiens of the roots of polynomials
was considered. This involves but is not limitedht® sums as well as the products of their
roots, not only those of the elementary or lowagrdes but also that of any higher degree
n. Efforts have been intensified to state and poar&ain characterizations which each case
of the degrees of the polynomial must satisfy. Herthe analysis further helps in
determining of zeros for any given polynomial, irdihg those of higher degrees.
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1. Introduction

Polynomials of degreen are very valuable in many mathematical operations,
computations and general sciences. Results invgplolynomials have been found very
useful and applicable to physics, chemistry, bimalgsciences, and even in the real-life
situations and circumstances. Many life situati@mases, as well as problems, can easily
be modeled mathematically using ideas from polymadsnin order to proffer suitable
solutions as required.

Given that W is a field for consideration. Choose the variabtgsc,, -, x,
over the field W. One of the main and essential objects and enfitiestudying algebraic
geometry as well as commutative algebra is contidimeystems of polynomial equations.
Such form of polynomial expressions can thus bergas follows :

Fl(xlleI 'xn) =0, Fm(xllel 'xn) =0 (l)

In order to find the explicit ( set of ) solutiotts (1), many techniques and methods have
been developed (please, see [3]). As a matterctf thee multivariate resultants methods
were introduced by Macaulay. ( Please see [4] #s&hwvere used in solving the systems
of the polynomial equations. This was done by elating the variables in turn. Now,
given some fields W, to solve the systems of polynomial equations tkerfinite field

W, the Grobner basis methods were used even thdwgghvtiole structure seems to be
somehow complex in forms and seems to be someulifés trying to comprehend and
get proper understanding (see [3] ).
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The concept of solubility or solvability in polyndafs is highly imperative, most
especially the concept of sums and products afabis. In [2]. The whole idea was limited
to monic polynomials of degree, whencea,, = 1. Meanwhile, in this work the general
characterizations for all polynomials were examingus involves but not limited to the
sums as well as the products of their roots not thrdse of the elementary or lower degrees
but also that of any higher degree n. Efforts Haaen intensified to state and prove certain
characterizations which each case of the degretisegfolynomial must satisfy. Hence,
the analysis further helps in the determinatiorthaf zeros for any given polynomial,
including those of higher degrees.

2. Basic terminologies and useful ideas from Galotheory
We have the following notable items on algebraisate, fields and splitting fields.

Definition 1. (see [1])Suppose thak: W be a field extension, and given thage W |x]

is a polynomial. If these coefficients are iW, we say that the polynomigl split over
the field L. This happens only whenevgris a constant polynomial or if there is the
existence of someg,,y,, -y, Of L 3

f(x) =clx—y1))(x—y2) - (x —yn)- Here, the leading coefficient gf is c € W.

Definition 2. (see [1])Given that W is a field. Define an extensiait W of W as an
embedding of W in some larger field.. Suppose thakt: W is a field extension and let
A be any subset df, we have that the set” U A will generate subfieldW (A4) of L.
This is the intersection for al the | subfieldsIofThese contairu A (Here, i should be
noted that any intersection for subfieldsIofwill itself also be a subfield of). and it
could be said thatiW (4) is the field which is obtainable froni# and could be by the
adjoining of the setl. Also, denote W (y4,v2, - vx) for any finite subsefy;,v,, - v}
of L. In particular,K(y) denotes the field obtained by adjoining some efgmeof L to
W. A field extensionL: W is said to be simple if there exists some elenyenf L such
that L = W(y).

Definition 3. (see [1])If L: W is a field extension, and suppose thais an element of.
and if 3 some (non zero) polynomigf € W][x] which have coefficient® W 3
f(y) =0, then we say that is algebraic over W. If this is not so, then, it could be said
that y is transcendental ovei/. Also, we say that a field extensidn W is algebraic if

it is certain that every element bfis also algebraic ove/ as required.

Definition 4 (see [1])Suppose thak: W is a field extension. Therd, can be said to be
such as a vector space over the fidld. Now, let L be a finite-dimensional vector space
over the field W. Then the extension; W could be said as finite. Now, define the
degreeL: W to be the dimension df, which is considered as a vector space over the
field W. For more other details as regards, polynomiatseaquations may likely be of
some importance (please, see [5 to 30]).

Lemma 1. (see [1]Every finite field extensiofL: W] is algebraic.
Proof: Suppose thak: W is a finite field extension. Also, let = [L: W]. be the degree
or the order of the field extension. Given tlya& L.. We have that, either of the set of
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elementsl,y,y?,---,y™ are not all districts or else the elements arnehr dependence
over the given field W (By inference, a linearly independent subset afan be said to
possibly have at most elements ).
Hence,3 ry,1,15,+,1, € W, not all zero, in which
To+ny+ny?+ +nrny"=0 (2
Thus, y is algebraic overW. This shows that the field extensian W is algebraic as
requiredd

3. Soluble groups

The notable Mathematician by name Evariste Galais the individual who introduced
the concept of a soluble group into the field oftMematics. This was actually done so as
to state as well as to give me proof of his fundatadegeneral theorems in line with the
solvability concerning the polynomial equations.

Definition 5. (see [1] and [2])A group P can be said to be soluble ( also called solvable)
if 3 a finite sequencé,, P, -+, B, all of whose are subgroups Bf such thatP, = {1}

and P, = P, and> P;_; is observed to be normal i and also thaP;/P;_; is also
abelian fori = 1,2, -+, n.

Definition 6. (please see [1}A commutative ring F with an identity such that every non-
zero element of F which is non zero is also a unit is known to bigell. Here, the so
called field F, is an additive abelian group.

Definition 7. Every polynomialP (x) in variablex having the coefficients in some field
F has an expression which is of the form statedisAs :

P(x) =X, Aixt = Ag + Apx + Apx? + 4 Ay x™ 1+ AxT, 3

Here,4; € F,0<i<n

P(x) can be referred to as a polynomial function, disl happens whenever
appears as a variable or indeterminate. A polynbegjaationP (x) = C is expressible in
a matrix form. This could be given @ X) = AX = K, where the entityd is the
coefficient matrix,X, the matrix of the powers of the indeterminatei@lae ) x and B,
a constant matrix.

We thus, have:

P(x)=[a0 a1 az - an][1x2:x"] =b € F. Here, we multiply a matrix

of order 1 x n with another vector matrix of order x 1, which produces a scalar
be F

Definition 8. Any polynomial of two indeterminates is given by :
P(x) = Xikjoo QijXix;. (4)

A polynomial P(x) = b of two indeterminateg, y written as:

F[x,y] (whereb,a;; € F ) is better expressed in matrix form as:
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Qoo Qo1 Qo2 ' Qoplip Q11 Q2 Q2Qpg Gp1 App
P(x) =
' ann
o [1 x x? x"y  xy x%y - xMyy? xyz]
2.,2 n.,2 : n n 2.,M n,,n
X=y© oo XTYyTYyS o Xy© xty© o XY

=[byb;b3 i by]
=b +b,+--+b,=bEF.

Theorem 2.(This is a Fundamental Theorem in Algebra) (plesse[2])
a) For e very polynomial of a given degree> 1 there is at least one zero ( root ).
This is contained in the complex numbers.
b) Let P(x) be the polynomial with degreg then P(x) can be said to have exactly
n district roots. These roots may either be real lmenyor complex numbers.
(In 1799, Gauss worked on this theorem’s proofgfmtoral dissertation topic in
his Ph.D.)

Theorem 3. Quoted from [2](This is the Maximum Number of Zeros ( roots ) Tieen)
(Please see [2]). It's not possible for a polyndrtdahave more real zeros (roots) more
than the degree of the polynomial .

Proof: By contradiction, let P(x) be aleg;;m = 1. Now, if t1,-, t;n, tmer @rem+1
roots possessed by the polynomial . By using thfgheorem, there exists polynomial
A;(x) which has thedeg < that of deg(P(x)) by one3 P(x) = (x — t;).4;(x).
Now, sinceP(t,) = 0 , andt,,t, are distinct, thatist; # t, , it must be thatd, (t,) =

0. Again, by factor theorem. Write this a®(x) = (x — t1). (x — t3).A,(x), whence
A,(x) is of deg2 less thanP(x). Now, sincets is also distinct fromt; andt, , we
must haveAd,(T;) = 0 . We haveP(x) = (x — t1). (x — t3). (x — t3).A3(x), where
deg(As;(x)) is of deg3 less than that oP (x). If we continue the process this way and
the process is repeated until reaching the givagestor whichP(x) = (x — t;) -+ (x —
tm)-Am(x), and 4,,(x) is of degm less thanP(x). SinceP(x) only haddegm in first

, A, (x) has to be otleg0. This makes4,, (x) to be of a constant. Allow the constant to
be 4,,(x) = b. Hence, t,,,, is still a root forP(x), and sincet,,,, is distinct from all
the othert;, it must be thatd,,(t,,+1) = 0 . This can be possible only whén= 0 =
P(x) = 0 =« since our assumption is that = 0. Hence, our initial assumption must be
wrong. Thus, we must have thB{x) has rootst;},i € {1,2,---,m}.0

Theorem 4. (The product and sum theorem ) (see [2])
Suppose that P(x) = x™ + Ap_ 1 x™ 1+ + Agx3A,x2 + Ajx + Ag = Yo Apxk =
0) be a monic polynomial equation with real coeffitis, wheren > 1, thena, can be
calculated ag—1)" x the product of the roots found fé(x). Also, a,,_, happens to
be the opposite of the sum of the rootPdk) Mathematically, it means that :

() ap =Tjzymy and (i) ap—y = =Xty 7y
Proof: By Theorems 1 and 22(x) hasn roots. Let These roots be denoted by
1,12, 13,, . NOw, the product fom factors that are associated to the roots can be
formed. Now, given thag[x] = [(x —r))(x — 1) (x —13) -=- (x — 1;,)]. This proof is
concluded by multiplying out all these terms anditspecting the coefficient on™!
alongside the constant term. On the other handssimg induction om,the formal proof
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can be made thus: Lat= 1, we haveP(x) = x + a, and for this situation, the only zero
for P(x) will be r; = —ay. Now 1y is only the rooty; is itself the product for the roots.
Meanwhile, (—1)"a, = (—1)'ag = —a, = 1. Thus, this settles the part involving the
constant term. Also, sincg is only the rootr; is itself the sum of the roots. The second
leading coefficient is the opposite of the sumtad toots. This is becausg = —(1;).
More instructively, by manually looking at the caggen n = 2 before the setting up of the
induction step. Also(x — 1) (x — 13)] = [x% + (=1, + —13)x + ry7,]. Here as well, it is
very clear that the second coefficient which idieg is the opposite of the sum of the
roots, the constant is product of the rodtéx) is ih quadratic form and we have that=
2= (1" —(—1)?% = 1. Now let it be that the result is true at anytirattwe havek
zeros. If P(x) is the polynomial havingk +1 zeros, i.e.P(x)=[(x —r)(x —

r5) -+ (x — 1,41)]- Now consider that we may writ®(x) = [{(x —r)(x — 1) - (x —
k)X = et ]

Giventhatq(x) = {(x — ) (x —1p) - (x —1,)}. Theng(x) has degreé. The
induction hypothesis is thus applicablegt@x). Now, write g(x) = [x* + a,_,x*1 +
-+ a;x +ap] then, we know thata,_; = —(X¥, ) and we know thata, =
(—Dk. 0k, n.

Now P(x) = q(x). (x — T41) = (€ — Thp1)- (XK + ap_ 21+ + ayx + ag}

= (xR 4 ap xR+ agx? + agx} + {(—Tes ) X% F () Qo x84

ot (M) X + (<) a0} = 2K+ {agg + (Frp) I+

+(ap = T41-a1)x + (=7+1) Ao
We haveay_; + (—T41) = —(Cy 1) + (7)) = —CET 1)

and (=Ties1)-ao = (—Tiesn)- (=D (M5 7) = (=D (1) O
4. Materials and methods
Here, the normal, basic mathematical fundamentalagplied in order to prove the results.

Statement of Problem
Proposition 5.
Suppose that F(x)=Y;Y, a;xt
is a polynomial. Then, given that, a,, -, a,] are the zeros dfx). From here, we have
the following conditions given ag; satisfied, (wherée € {1,2,3,:--,n}):

_\n _ “O0n-1 _\n ] _\n _ —On-3
(d).-= Xizo @i = ——,(d2). = Xiyj iy = —=, (d3). = Xicjap @i = ——
n n n
n n
Ap—s —Ap—s
(dg).= Z a0ty = — ,(ds). = Z 0y, O, Oy Oy, iy = —
i<j<k<l n i1<iz<iz<ig<is n
n
d _ _ —An—k
(di).= iy @iy Qi Qg g~ Ay, = —
iy <ip<iz<ig<ig<--<ix n
(=D*a,

v (dy) = ng=1aik =
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5. Results
The proofs for the statement of problem.
By induction, we have as follows:

(a) The trivial case
If n=0.We havef(x) = ay = C, a constant polynomial. This case is trivial.

(b) The linear case
For the linear case, i = 1.

We have,f(x) =a1x+aqpy=2x=a; =

(c) The quadratic case
We have
f(x)=ax*+a;x+ay,=0 5)
By theorem (2), f has at most two zeros. kgtand a, be the zeros and let
them be represented loy and 8 respectively . Then, we have:
F(x)=[(x—a)(x—pB)] =0= [x?> — (a + B)x + aBf] = 0. Dividing (5) by
a,, we have ,

fi(x) = x? + x + =0 (6)
fz(x)=x2—(a+ﬁ)x+aﬁ=0 Q)
Comparing (6) and (7), we have that- § = —,aff = — This satisfie(d,),and (d,)

as stated in the foregoing conditions

(d) The cubic casen =3

Let a, B, andy be the solutions . This implies from theorem ] that
F)=[(x—a)x =B x—y)]1=F) =[x*+(a+p+y)x*+ (af +

ay + By)x — aBy] = 0.

But F(x) = [x* +=2x* + =L x +=2.] This actually, is in line witt(d;), (d2) and (ds).

as

And we have that [a + ﬁ ¥ Nl = % [(aB + ay + By)] = [Z—; and afy] = [Z—Z] O

(e) The quartic case,n = 4
Set
F(x) = x* +-= x+a2 x2+8x4+%0=9 (8)
2 Qg Qg

Let a, B,y andé be the zeros fgf. We have that :
F)=[x—a)(x—-Bx—-y)(x—-8)]=0
FX)=[x*—(a+B+—-y+8)x>+ (af +—ay +ad + By + S + y&)x* —
(aBy + afd + ayd + Byd)x + afyd] =0 (9)
Comparlng 8 and (9)=>[a+B+y+6]=—3,[(af+—-ay+aS+By+p5+

y&)] = L (aBy + aByd + ays + Byd) = 4 and aﬁy6 =%
Ay Ay Ay

(f) The quintic case,n = 5
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Proposition 6. Let

f(x) = X aix’.
Then, the conditiond, d,, -+, ds are satisfied.
Proof. By theorem (2), there exist five zeros (roozt$)i =1,---,5 such thatf(a;) = 0.

We have :f (x) = a®(x® + Ztx* + 2 x +22x2 4 x50 =0 = [a5(x — @) (x -
az)(x —az)(x —ay)(x — “5)] =0. =>
[(x —a)(x —ax)(x —az)(x —a))(x —as)] =0 (10)

Expandlng (10), we have that

x —(Z a;)x* +(Zaa])x —(z aa]ak)x +( Z ;oo a)x — | I

i#j i#j*k i<j<k<l

By this, it is observed that

5 5 5

a; = —— a;a; = — Ay =
. ' as'a 7 as’ L S as '’
i=1 i#] i#j*k

5
a, 5 ao
a;ajaa =2 and 7 a;—

a

a
i<j<k<ll 5 5

And so, for a polynomial of degree we have as follows :

Proposition 7. Suppose that

f(x) =Xio a;x".
Then, thre exish zeros, gven by (a4, a,, -+, @,) such that the conditiong,, d,, -+, d,,
are satisfied.

Proof: Following the forgoing theorem as given aboveeg,can deduce that
F(x) = "L, (x — l) =0

= f(x) = x™ —(Z a;)x™ 1+(§: a; ;) e = ( Z a;, a;, ;) x>

i1<i, i1<iy<i3

+ot (CDE e, g xP+ (DM g,
Hence, this has completely satisfied the axiatpsi,, - d,,.0

6. Conclusions
The existence of the zeros depends on the degribe @lolynomial and the stated given

conditions.

7. Open problem

We now leave it open to our esteemed readersadaite the consideration of the zeros of
polynomials in two indeterminates as stated in #qng4) and also to extend the results
to the polynomials of degree
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