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Abstract. This article aims to prove all solutions to the Bhantine equation 55- 53 =
Z?wherex, y andz are non-negative integers. The results indicatatithe solution isx(
y,2) = (0, 0, 0).
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1. Introduction

The diophantine equation is a topic in Number Tiietbrconcerns finding only an integer
solution to an equation. The exponential diophanéquation is the diophantine equation
where the unknown variables are exponents. Marmarekers studied these equations. For

example, in 2007, the exponential diophant®ie+ 5 = zZ°was proved by Acu [1]. He
found all non-negative integer solutiof, y,z) including (3,0,3 and (2,1,3 . In

2011, the diophantine equatiefi + 7° = zZ2and4* +11 = z* were studied and proved
that both equations have no solution [10]. Thery&xng [9] found that the unique solution

to the equatior8* +5 = Z’is(x,y,2z) =(1,0,2. During 2012-2017, many diophantine
equations was studied, for example [2, 4, 5, 7,18]2018, Rabago [6] presented a
diophantine equation in for@* —b’ =z, wherea,b are constant and non-negative
integers andx, y, zare non-negative integers. He studieddor 4 andbis prime. The

solutions are(x, y, z) :(q—l,l, - :) whereqis prime. Next year, the diophantine

equation6* —11' = z?was studied by Brushtein [3]. He showed that thermo solution
for 2< x < 16. After that, Thongnak et al. [12] proved that &tiation2* — 3’ = zZ*has
three solutionx, y,z): (0,0,0) {1,0,}and(2,1,1). After that, they investigated three

equations which arg -5 = 7%, 7* - 2¥ = Z2and 5* - 2[B = 7° [13, 14, 15]. The first
two equations had a trivial solution, and the &giation had no solution.
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From previous works, many equations in the fain-b’ = z*were proved using
various methods, but there was no general methpdote the solution to the equations.
The study of individual equations has been necgssathis paper, we aim to prove all

solutions to55* - 53 = z* where x, yand z are non-negative integers.

2. Preliminaries
In this section, we introduce basic knowledge aupin the proof.

Definition 2.1.[11] If n is a positive integer anm:d(a,n) = ], the least positive integer
k such thata El( modn) is called the order of a moduland is denoted bgrd, (a) :
Lemma 2.2.[11] If ord, (a) =k, thena’ = a°(modn)if and only if r = s(modk).

3. Main results
Theorem 3.1.For all x,y,z € N* U {0}, the Diophantine equatiob5* — 53 = z* where
X, y, zare non-negative integers has only one solutiohisha, y,z) =(0,0,0.
Proof: Letx,y,z € N* U {0} such that

55— 53 = 7°. 1)
The proof is divided into four cases.
Case 1:x=y=0. (1) becomes’ =0. Thusz =0, the solution(X, y,z) is (0,0,0).
Case 2:x=0andy>0. From (1), we havd—53 =7°. This means thaz® <0,
impossible.
Case 3:x>0andy=0. From (1), we obtainz"=55‘—1. We can see that
55=0( mod1} , so z*=-1(mod1} . This means thaz’=10(mod1} . It is
impossible becaus#® =0,1,3,4,5,9 mod 1)L
Case 4:x>0andy >0, we separate into two subcases.

Subcase 4.1xis odd. It follows thaB* = 3( mod4 . Since55= 3( mod 4 , we
obtain Z2=3‘~1(mod4 . This yields Z2=2(mod4) . It is impossible because
z2=0,1(mod4.

Subcase 4.2xis even. Letx = 2k, 3k € N*, 1)
becomes53’ = 55% - z°or 53 = ( 55 - z)( 5% + z) . There exis#, B € N* U {0} for
which 55 —z=53"and 55 + z= 53 where A<B andA+B=y. Then, we have
2055 = 53 + 58 or 205 (11 = 53( & 53*). Since, 53[25 (11, we obtain
A=0and B=Yy. This yields

251t = 1+ 53. 2)
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So1+9’ = 0( mod1}. This implies tha®’ =10( mod1} . Since2® = 9( mod1}and
2°=10(mod1]}, these yield2® = 2°(mod1) . Becauseord,,2=10, we have
6y =5(mod1Q . There existm € N such that6y=5+10m. This implies that
2(3y - 5m) = 5 which is impossible. Hence the solution(is y,z) =(0,0,0 . ]

4. Conclusion
In this article, we have proved the solution to¢heation55* - 53 = z* where x, yand

Zare non-negative integers. The knowledge of nurttiewry such as factoring method
and modular arithmetic was applied to obtain tHatem. We found that the equation has

only one solution which i§x, y,z) =(0,0,0.
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