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Abstract. In this paper, we find non-negative integer solutionsfor exponential Diophantine
equations of the type p3* + p¥ = z? where p is a prime number. We prove that such
equation has a unique solution (x,y,z) = (logz(p — 2),0,p — 1) if 2 # p = 2(mod3) and
(x,v,2) = (0,1,2)if p = 2. We aso display the infinite solution set of that equation in the
casep = 3. Finally, abrief discussion of the case p = 1(mod3) is made, where we display
an equation that does not have a non-negative integer solution and leave some open
guestions. The proofs are based on the use of the properties of the modular arithmetic.
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1. Introduction

Diophantine equations of the form a* + b¥ = ¢* have been studied by numerous
mathematicians for many decades and by a variety of methods. One of the first references
to these equations was given by Fermat-Euler [4], showing that (a, ¢) = (5,3) isthe unique
positive integer solution of the equation a? + 2 = ¢3. Severad works on exponential
Diophantine equations have been developed in recent years. In 2011, Suvarnamani [4]
studied the Diophantine eguation 2* + p¥ = z%. Rabago [5] studied the equations 3* +
19¥ = z? and 3* + 917 = z2. The solution sets are (1,0,2), (4,1,10) and (1,0,2), (2,1,10),
respectively. A. Suvarnamani et al. [7] found solutions of two Diophantine equations 4* +
7Y =z% and 4* + 11Y = z%2. Sroysang (see [6]) studied the Diophantine equation 3* +
177 = z2. Chotchaisthit (see[3]) showed that the Diophantine equation p* + (p + 1)¥ = z2
has unique solutions (p, x,y,z) = (7,0,1,3) and (p,x,y,2) = (3,2,2,5) if (x,y,z) e N® andp
is a Mersenne prime. In 2019, Thongnak et al. (see [9]) found exactly two non-trivia
solutionsfor the equation 2* — 3¥ = z2, namely (1,0,1) and (2,1,1). Buosi et al. (see[1] and
[2]) studied some exponential Diophantine equations that generalized the work of
Thongnak et al. (see[9]). Several other similar and recent works can be found in Thongnak
et al. [10], [11] and [12].
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In this work we show that when p > 3 is a prime integer such that p = 2(mod3), there is
an ordered triple (x, y, z)of non-negative integersthat solvesthe equation p.3* + p¥ = z2 if
and only if p — 2 isanon-trivial power of 3. In the affirmative case, there exists only one
solution whichisgiven by (x,y, z) = (logs(p — 2),0,p — 1).

This result generalizes the theorem obtained in Thongnak et al. [10] whenp = 11. In
other words, Thongnak et al. [10] found the only solution (2,0,10) for the Diophantine
equation 11.3* + 11¥ = z? using modular arithmetic. We aso determine the unique
solution of the case p = 2 and the infinite set of solutions when p = 3. The case wherep is
congruent to 1 modulo 3 has not been solved completely because it is not understood why
there are situations whose eguation has a solution and others that do not. At the end of the
article, a brief discussion of the case p = 1(mod3) is made, showing an example of an
equation with no solution and suggesting some open questions.

2. Some notations

Denote by Z be the set of integer numbers and let N be the set of all positive integers
together with the number 0, that is, N = {0,1,2,3, ...}, such a set will be called the set of
natural numbers. DefineN*=N — {0} and N9 = N x N x --- x N as the cartesian product of
q copies of N. When a divides b we will use the symbol a | b. When a is congruent to b
module m we will write a = b(imodm). Let a,m be integers with a > 0 and m > 2. The
smallest positive integer k such that a* = 1(modm) will be said the order of a modulo m
and will be denoted as |a|,,. The set of al non-negative integer solutions of the equation
p3* + p¥ = z2 will be said simply the solution set of the equation, i.e., the set {(x,v,2) €
N3:p3* + p¥ = z%}.

3. Results
In this section, we will find the solution set for the equation

p3* +p¥ = z%, (x,v,2) € N5, (D]
for several primeintegers. We will divide the resultsinto four sections: case p = 3, general
results for p > 3, casep = 2(mod3) and finally, we will make a brief explanation of the
casep = 1(mod3) sinceinthis casethe general problem still remains open. The motivation
for thiswork isthe paper Thongnak et al. [10] where the authors solved the above equation
in the particular case p = 11. Theresult of Thongnak et al. is an immediate consequence of
Theorem 1.13 proved in thisarticle.

Casep =3
In this subsection, we present all the non-negative integer solutions of the equation p3* +
pY = z? inthe particular case whenp = 3.

Theorem 1.1.The solution set of the Diophantine exponentia equation
3:3*+3Y =22 2
inN3is{(2n,2n,2.3");n € N}U{(1 + 2n,3 + 2n,2.3"*1); n € N}.

The proof is based on the combination of the results of the following six lemmas.

Lemma 1.2.If (y,z) € N? isasolution of the equation 3¥** + 1 = z2 theny = 0.
Proof: 3%*1 +1=2223""1=(z+1)(z—-1)>z-1=1,z+1=3=>y=0.QE.D.
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Lemma 1.3.1f (x,y,z) € N3 isasolution of the equation 3*(3¥*1 + 1) = z2 theny = 0.
Proof: Suppose there exists (x,y,z) € N® such that 3*(3¥*' + 1) = z% and y > 0. By
Lemmal.2, 3¥*! + 1 itisnot a perfect square. Thusthere is a prime integer gthat appears
an odd number of times in the prime factorization of 3¥** + 1. Since q | z? we have two
possibilities:

x = 0= 37" + 1 isaperfect square;

x>0=>¢ql3*=>qg=3>3]|1
In both cases we have an absurd. Thereforey = 0. Q.E.D.

Lemma 1.4.1f (x,y,z) € N3 isasolution of the equation (2) theny — x € {0,1,2}.

Proof: If y < x thenthereexistsaninteger k > 0 suchthat x=y+k. Replacing xin (2) with
y + k we obtain

3.3Y*k +3Y = zZif and only if 3V(3**1 + 1) = 22,

which contradicts Lemma 1.3. Therefore x < y.

If y—x=>3theny=x+k for some integer k = 3. Replacing y in (2) with x + k we
obtain 3-3* 4+ 3**k = z2 if and only if 3**1(3k~1 + 1) = 22,
which is acontradiction with Lemma 1.3. Thereforey — x € {0,1,2}. Q.E.D.

Lemma 1.5.1f (x,y,z) € N3 isasolution of the equation (2) theny = x or y = x + 2.
Proof: By Lema 1.3,y — x € {0,1,2}. Supposey = x + 1. Replacing y in (2) with x + 1we
obtain 3**1 4 3**1 = 22 = 2.3%*1 = 22 = 2| z2? and 4 does not divide z?,

which isan absurd. Thereforey — x € {0,1,2}. Q.E.D.

Lemma 1.6.If (x,y,z) € N® isasolution of the equation (2) andy = x, thenthereexistsn €
Nsuchthatx =y =2nandz=2-3"

Proof: Making y = x in equation (2) we get

31+ 3¥ =22 5 4.3 =z2 > x iseven.

Henceforth thereexistsn e N suchthaty = x = 2nandz = v4 - 32n = 2. 3. Q.E.D.

Lemma 1.7.If (x,y,z) € N3 isasolution of theequation (2) and y — x = 2 then there exists
n € N such that

x=1+2n, y=3+2nandz=3""",

Proof: Making y = x + 2 in equation (2) we get

3%+ 4 3%%2 = 22 5 4. 3%+ = 22 o x is odd.

Henceforth there exists n € N such that x=1+2n,y=3+2n and z=+4-32nt2 =2.
3"*1.Q.E.D.

General results for a primep # 3
Lemma 1.8.Letp # 3 beaprimeinteger. If (x,y,2) € N3 isasolution of

p3* +p? = 2%, (€©)
theny=0o0ory=1.
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Proof: Let (x,y,z) beasolution of (3). Assumey > 2. Itisclear that z # 0. Inthiscase, p
divides z because p3* + p¥ = z2 = p(3* + p¥™1) = 72

Let m € N* such that z = m.p. Substitute m.p for z in the above equation to obtain

3* = p(m? — p*7?).

If x = 0 the above equation is an absurd for al primeinteger p = 2. If x > 0 wehave 3 | p,
which isabsurd for al primeinteger p # 3. Thereforey = 0 or y = 1.Q.E.D.

If one substitute 0 for y in the equation (3) one obtain p3* + 1 = z? which is equivalent to
the following equation
p3*=z"-1=(z—-1)(z+1). (4

Lemma 1.9.Let p # 3 beaprimeinteger. If (x,z) € N? isasolution of (4), then x > 0 and
z itisnot equivalet to 0 module 3.

Proof: Let (x,z) beasolution of (4). If x = 0 then

p=@-1D(E+1)=>z=2andp =3,

which is a contradiction. Hence x > 0. If 3 divides z then 3 divides z2 — p3* = 1, which is
an absurd. Thereforeit is not equivalet to 0 module 3. Q.E.D.

We say that h isanon-trivial power of 3 if h = 3* with x € N*.

Lemma 1.10.Let p > 3 be a prime integer. The equation (4) has a solution in N2 if and
only if p —2 is a non-trivial power of 3 or p + 2 is a non-trivial power of 3. In the
affirmative case, the equation (4) has a unique solution in N2 given by

(logs(p — 2),p — 1) if p — 2 isanon-trivial power of 3;

(logs(p + 2),p + 1) if p + 2 isanon-trivial power of 3.

Proof: Let (x,z) € N? beasolution of (4). By Lemma 1.9, x > 0 and z it is not equivalent
to 0 module 3.

If z=1(mod3) thenz — 1 = 0(mod3). Sincep3* = (z— 1)(z + 1) it follows that
z+1=p z=p-—-1 z=p-1
z-1=3" 3 =z-1=p-2" x=logs(p—2)

If z=2(mod3) thenz + 1 = 0(mod3). Sincep3* = (z— 1)(z + 1) it follows that
Z—1=p:> z=p+1 N z=p+1

z+1=3* 3*=z4+1=p+2 " x=logz(p+2)

The converseis straightforward and will be omitted. Q.E.D.

Making y = 1 in the equation (3) one abtain
p3* +p = z=% 5)

Lemma 1.11.Letp > 3 beaprimeinteger. If (x,y) € N2 isasolution of (5) then x > 0 and
z itisnot equivalent to 0 module 3.

Proof: Suppose (x,y) € N? isasolution of (5). If x = 0 then 2p = 22, which is an absurd.
It followsthat x > 0.
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If z=0(mod3) then 3 divides z? = p3* + p and therefore 3 divides p which is a
contradiction. Q.E.D.

Casep = 2(mod 3)

The Theorem 1.13 below presents al the non-negative integer solutions of the equation
p3* + p¥ = z? inthe particular case where p = 2(mod3) and p # 2. Thisresult generalizes
Theorem 2.1 of [10] wherep = 11.

Lemma 1.12.Thereisno z € Z such that z2 = 2(mod3).
Proof: If z = 0(mod3), then z2 = 0(mod3). If z = 1(mod3) or z = 2(mod3), then z2? =
1(mod3). Q.E.D.

Theorem 1.13.Let p > 3 be aprimeinteger such that p = 2(mod3). The equation

p3* +p” =22, (6)
admits a solution in N3 if and only if p — 2 is a non-trivial power of 3. In the affirmative
case, the unique solutionis (x,y,z) = (log;(p — 2),0,p — 1).
Proof: Let (x,y,z) beasolution of (6). By Lemmal.8wemusthavey =0ory=1.1f y =
0, it follows from Lemma 1.10 that (log; (p — 2),0,p — 1) isthe unique solution in N3 of the
equation p3* + 1 = z2, since log;(p — 2) is an integer. Now consider y = 1. By Lemma
1.11, x = 1. So we get
2 =p=z%—p3* = z%(mod3),
which isacontradiction by Lemma 1.12. Q.E.D.

Remark 1.14.For example, for p = 17,23,41,53,59,71 the equation of the previoustheorem
has no non-negative integer solutions. For p = 5,11,29,83 the solutions are respectively
(1,0,4), (2,0,10), (3,0,28) and (4,0,82).

Theorem 1.15.The unique solution of the Diophantine exponential equation

2-3%+2Y =22 (x,y,2z) € N3, @)
isthe ordered triple (x,y, z) = (0,1,2).
Proof: Let (x,y,z) beasolution of (7). By Lemmal.8wemusthavey =0ory =1.If y =
0, it follows from Lemma 1.9 that x > 0 and z it is not equivalent to 0 module 3. In this
case we have the following equival ence for equation (7)
2-3*+1=z%ifandonlyif2-3*=(z-1)(z+1) =22 - 1.

If z=1(mod3) thenz — 1 = 0(mod3) and z + 1 = 2(mod3), then we have
z+1=p N z=1
z—1=3* 3*=(

an absurd.
If z=2(mod3) thenz — 1 = 1(mod3) and z + 1 = 0(mod3), then we have
z+1=3*% - Z=3

z—1=2 3% =4’
an absurd.

Now consider y = 1. In this case equation (7) reduces to equation
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2:3*+2=2(3*+1) =z%

If x =0 wehavez? =4, s0z=2. Therefore (x,y,z) = (0,1,2) isasolution to equation (7)
inN3. If x > 0 then z2 = 2(3* + 1) = 2(mod3), a contradiction by Lemma 1.12. Therefore
(x,v,2) = (0,1,2) isthe only solution of equation (7). Q.E.D.

4. When p = 1(mod 3), the equation

p3* +p¥ = z%,(x,y,z) € N3 8
has not yet been completely solved, that is, the behavior of the solutions of these equations
is not known, whether they have a solution and whether the solutions, if any, are finite or
infinite.

Let (x,v,2) be a solution of (8). By Lemma 1.8, y € {0,1}. By Lemma 1.10 we can say
whether equation (8) will have a solution as long asp + 2 is a non-trivial power of 3.
Furthermore, that lemma determines the unique solution in this case. However, for the
casey = 1 we do not have a conclusive result for the time being. For example, equations
with p = 7,61 and 547 respectively have the following solutions (3,1,14), (5,1,122) and
(7,1,1094). We do not know if those three equations have other solutions.

Remark 1.16.Note that (q,2) € N2 isasolution of 3* + 1 = p - w? if and only if(q, 1,2p)
isasolution of p3* + p¥ = z2,(x,y,z) € N3.

In the next theorem we will show an example whose given equation does not have non-
negative integer solutions.

Theorem 1.17.The exponential Diophantine equation

13- 3% + 13Y = z2,(x,y,72) € N3, 9
has no solutions.
Proof:Let (x,y,z) be asolution of (9). By Lemma 1.8, y € {0,1}. First consider y = 0. By
Lemma 1.10 there are no solutions to the equation in this case, sincep + 2 = 15 isnot a
non-trivial power of 3.

Supposethereisasolution (x, 1, z) € N3 of (9). In thiscase equation (9) reducesto 13 -
3*+ 13 =22 Note that 13 divides z and therefore z = 13w,w € N*. So we have the
following equivalence of equations
13-3*+13 =22 =132 -w2if andonly if 3* + 1 = 13 - w2 = 0(mod13).

On the other hand, notice that 32 = 9(mod13) and 3 = 1(mod13). Therefore the order of
3 modulo 13 is equal to 3, that is|3]|;3 =3. So writex =3m+r, wheremeNandr €
{0,1,2}. So we have the following equation

2(mod 13) r=0
3¥ 41 =33+ 4 1 =27m.3" +1=3" +1(mod13) = 4(mod 13) ,if r =1,

10(mod 13) r=2
an absurd. Q.E.D.

5. Open questions
The following questions refer to the equation
p3* +pY = z%,(x,y,2) € N® withp = 1(mod 3). (10)
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«  When p = 1(mod3), what additional conditions must exist on p for the
equation (11) to have a solution?

« If thereis a solution for equation (10), how do you know if the number of
solutionsisfinite or infinite?

+  What additiona conditions must be imposed on p for there to be a unique
solution?
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