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Abstract. In this paper, we find non-negative integer solutions for exponential Diophantine 
equations of the type �3� � �� � ��  where �  is a prime number. We prove that such 
equation has a unique solution 	
, �, �
 � 	log�	� � 2
,0, � � 1
  if 2 � � ≡ 2	���3
  and 
	
, �, �
 � 	0,1,2
if � � 2. We also display the infinite solution set of that equation in the 
case � � 3. Finally, a brief discussion of the case � ≡ 1	���3
 is made, where we display 
an equation that does not have a non-negative integer solution and leave some open 
questions. The proofs are based on the use of the properties of the modular arithmetic. 
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1. Introduction 
Diophantine equations of the form �� � �� � ��  have been studied by numerous 
mathematicians for many decades and by a variety of methods. One of the first references 
to these equations was given by Fermat-Euler [4], showing that 	�, �
 � 	5,3
 is the unique 
positive integer solution of the equation �� � 2 � ��.  Several works on exponential 
Diophantine equations have been developed in recent years. In 2011, Suvarnamani [4] 
studied the Diophantine equation 2� � �� � ��. Rabago [5] studied the equations 3� �

19� � ��  and 3� � 91� � �� . The solution sets are 	1,0,2
, 	4,1,10
  and 	1,0,2
, 	2,1,10
 , 
respectively. A. Suvarnamani et al. [7] found solutions of two Diophantine equations 4� �

7� � ��  and 4� � 11� � �� . Sroysang (see [6]) studied the Diophantine equation 3� �

17� � ��. Chotchaisthit (see [3]) showed that the Diophantine equation �� � 	� � 1
� � �� 
has unique solutions 	�, 
, �, �
 � 	7,0,1,3
 and 	�, 
, �, �
 � 	3,2,2,5
 if 	
, �, �
 ∈ ℕ� and �  
is a Mersenne prime. In 2019, Thongnak et al. (see [9]) found exactly two non-trivial 
solutions for the equation 2� � 3� � ��, namely 	1,0,1
 and 	2,1,1
. Buosi et al. (see [1] and 
[2]) studied some exponential Diophantine equations that generalized the work of 
Thongnak et al. (see [9]). Several other similar and recent works can be found in Thongnak 
et al. [10], [11] and [12]. 
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 In this work we show that when � > 3 is a prime integer such that � ≡ 2(���3), there is 
an ordered triple (
, �, �)of non-negative integers that solves the equation �. 3� + �� = �� if 
and only if � − 2 is a non-trivial power of 3. In the affirmative case, there exists only one 
solution which is given by (
, �, �) = (log�(� − 2),0, � − 1).  
       This result generalizes the theorem obtained in Thongnak et al. [10] when � = 11. In 
other words, Thongnak et al. [10] found the only solution (2,0,10) for the Diophantine 
equation  11.3� + 11� = ��   using modular  arithmetic. We also determine the unique 
solution of the case � = 2 and the infinite set of solutions when � = 3. The case where � is 
congruent to 1 modulo 3 has not been solved completely because it is not understood why 
there are situations whose equation has a solution and others that do not. At the end of the 
article, a brief discussion of the case � ≡ 1(���3) is made, showing an example of an 
equation with no solution and suggesting some open questions. 

2. Some notations 
Denote by ℤ be the set of integer numbers and let ℕ be the set of all positive integers 
together with the number 0, that is, ℕ = {0,1,2,3, … }, such a set will be called the set of 
natural numbers. Define ℕ*=ℕ − {0} and ℕ, = ℕ × ℕ × ⋯ × ℕ as the cartesian product of 
/ copies of ℕ. When � divides � we will use the symbol � ∣ �. When � is congruent to � 
module �  we will write � ≡ �(����).  Let �, �  be integers with � > 0  and � > 2. The 
smallest positive integer 1 such that �2 ≡ 1(����) will be said the order of � modulo � 
and will be denoted as |�|4 . The set of all non-negative integer solutions of the equation 
�3� + �� = �� will be said simply the solution set of the equation, i.e., the set {(
, �, �) ∈
ℕ�: �3� + �� = ��}. 

3. Results 
In this section, we will find the solution set for the equation 

                 �3� + �� = ��, (
, �, �) ∈ ℕ�,                                       (1)            
for several prime integers. We will divide the results into four sections: case � = 3, general 
results for � > 3, case � ≡ 2(���3) and finally, we will make a brief explanation of the 
case � ≡ 1(���3) since in this case the general problem still remains open. The motivation 
for this work is the paper Thongnak et al. [10] where the authors solved the above equation 
in the particular case � = 11. The result of Thongnak et al. is an immediate consequence of 
Theorem 1.13  proved in this article. 

Case � = 3 
In this subsection, we present all the non-negative integer solutions of the equation �3� +
�� = �� in the particular case when � = 3. 
 
Theorem 1.1. The solution set of the Diophantine exponential equation 

                      3 ⋅ 3� + 3� = ��                                                    (2) 
in ℕ� is {(27, 27, 2. 38); 7 ∈ ℕ} ∪ {(1 + 27, 3 + 27, 2. 38;<); 7 ∈ ℕ}. 
 
The proof is based on the combination of the results of the following six  lemmas. 

Lemma 1.2. If (�, �) ∈ ℕ� is a solution of the equation 3�;< + 1 = �� then � = 0. 
Proof: 3�;< + 1 = �� ⇒ 3�;< = (� + 1)(� − 1) ⇒ � − 1 = 1, � + 1 = 3 ⇒ � = 0. Q.E.D. 
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Lemma 1.3. If 	
, �, �) ∈ ℕ� is a solution of the equation 3�(3�;< + 1) = �� then � = 0.  
Proof: Suppose there exists (
, �, �) ∈ ℕ�  such that 3�(3�;< + 1) = ��  and � > 0.  By 
Lemma 1.2, 3�;< + 1 it is not a perfect square. Thus there is a prime integer /that appears 
an odd number of times in the prime factorization of 3�;< + 1. Since / ∣ �� we have two 
possibilities: 
                    
 = 0 ⇒ 3�;< + 1 is a perfect square; 
                    
 > 0 ⇒ / ∣ 3� ⇒ / = 3 ⇒ 3 ∣ 1. 
In both cases we have an absurd. Therefore � = 0. Q.E.D. 

Lemma 1.4. If (
, �, �) ∈ ℕ� is a solution of the equation (2) then � − 
 ∈ {0,1,2}. 
Proof: If � < 
 then there exists an integer 1 > 0 such that x=y+k. Replacing 
in (2) with 
� + 1 we obtain 
3 ⋅ 3�;2 + 3� = �� if and only if 3�(32;< + 1) = ��. 
which contradicts Lemma 1.3. Therefore 
 ⩽ �. 

If � − 
 ≥ 3  then � = 
 + 1  for some integer 1 ≥ 3.  Replacing �  in (2) with 
 + 1  we 
obtain  3 ⋅ 3� + 3�;2 = �� if and only if 3�;<(32A< + 1) = ��. 
which is a contradiction with Lemma 1.3. Therefore � − 
 ∈ {0,1,2}. Q.E.D. 

Lemma 1.5. If (
, �, �) ∈ ℕ� is a solution of the equation (2) then � = 
 or � = 
 + 2. 
Proof: By Lema 1.3, � − 
 ∈ {0,1,2}. Suppose � = 
 + 1. Replacing � in (2) with 
 + 1we 
obtain 3�;< + 3�;< = �� ⇒ 2. 3�;< = �� ⇒ 2 ∣ �� and 4 does not divide ��, 
which is an absurd. Therefore � − 
 ∈ {0,1,2}. Q.E.D. 
 
Lemma 1.6. If (
, �, �) ∈ ℕ� is a solution of the equation (2) and� = 
, then there exists 7 ∈
ℕ such that 
 = � = 27 and � = 2 ⋅ 38. 
Proof: Making � = 
 in equation (2) we get 
3�;< + 3� = �� ⇒ 4 ⋅ 3� = �� ⇒ 
 is even. 
 
Henceforth there exists 7 ∈ ℕ such that � = 
 = 27 and � = √4 ⋅ 3�8 = 2 ⋅ 38 . Q.E.D. 
 
Lemma 1.7. If (
, �, �) ∈ ℕ� is a solution of the equation (2) and � − 
 = 2 then there exists 
7 ∈ ℕ such that 
x=1 + 2n, y=3 + 27 and � = 38;<. 
Proof: Making � = 
 + 2 in equation (2) we get 
3�;< + 3�;� = �� ⇒ 4 ⋅ 3�;< = �� ⇒ 
 is odd. 
Henceforth there exists 7 ∈ ℕ  such that x=1 + 2n,y=3 + 27  and � = √4 ⋅ 3�8;� = 2 ⋅
38;<.Q.E.D. 
 
General results for a prime � ≠ 3 

Lemma 1.8. Let � ≠ 3 be a prime integer. If (
, �, �) ∈ ℕ� is a solution of 
                        �3� + �� = ��,                                                      (3) 

then � = 0 or � = 1.      
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Proof: Let 	
, �, �) be a solution of (3). Assume � ≥ 2. It is clear that � ≠ 0.  In this case, � 
divides � because �3� + �� = �� ⇒ �(3� + ��A<) = ��. 
Let � ∈ ℕ* such that � = �. �. Substitute �. � for � in the above equation to obtain 
3� = �(�� − ��A�). 
If 
 = 0 the above equation is an absurd for all prime integer � ≥ 2. If 
 > 0 we have 3 ∣ �, 
which is absurd for all prime integer � ≠ 3. Therefore � = 0 or � = 1.Q.E.D. 

If one substitute 0 for � in the equation (3) one obtain �3� + 1 = �� which is equivalent to 
the following equation 

                      �3� = �� − 1 = (� − 1)(� + 1).                                           (4) 
 
Lemma 1.9. Let � ≠ 3 be a prime integer. If (
, �) ∈ ℕ� is a solution of (4), then 
 > 0 and 
� it is not equivalet to 0 module 3. 
Proof: Let (
, �) be a solution of (4). If 
 = 0 then 
� = (� − 1)(� + 1) ⇒ � = 2 and � = 3, 
which is a contradiction. Hence 
 > 0. If 3 divides � then 3 divides �� − �3� = 1, which is 
an absurd. Therefore it is not equivalet to 0 module 3. Q.E.D. 
 
We say that ℎ is a non-trivial power of 3 if ℎ = 3� with 
 ∈ ℕ*. 

Lemma 1.10. Let � > 3 be a prime integer. The equation (4) has a solution in ℕ� if and 
only if � − 2  is a non-trivial power of 3  or � + 2  is a non-trivial power of 3.  In the 
affirmative case, the equation (4) has a unique solution in ℕ� given by 
(log�(� − 2), � − 1) if � − 2 is a non-trivial power of  3; 
(log�(� + 2), � + 1) if � + 2 is a non-trivial power of  3. 
Proof: Let (
, �) ∈ ℕ� be a solution of (4). By Lemma 1.9, 
 > 0 and � it is not equivalent 
to 0 module 3. 

If � ≡ 1(���3) then � − 1 ≡ 0(���3). Since �3� = (� − 1)(� + 1) it follows that 
� + 1 = �

� − 1 = 3� ⇒
� = � − 1

3� = � − 1 = � − 2 ⇒
� = � − 1


 = log�(� − 2). 

 
If � ≡ 2(���3) then � + 1 ≡ 0(���3). Since �3� = (� − 1)(� + 1) it follows that 
� − 1 = �

� + 1 = 3� ⇒
� = � + 1

3� = � + 1 = � + 2 ⇒
� = � + 1


 = log�(� + 2). 

The converse is straightforward and will be omitted. Q.E.D. 

Making � = 1 in the equation (3) one obtain 
                      �3� + � = ��.                                                   (5) 

 
Lemma 1.11. Let � > 3 be a prime integer. If (
, �) ∈ ℕ� is a solution of (5) then 
 > 0 and 
� it is not equivalent to 0 module 3. 
Proof: Suppose (
, �) ∈ ℕ� is a solution of (5). If 
 = 0 then 2� = ��, which is an absurd. 
It follows that 
 > 0. 
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If � ≡ 0(���3)  then 3  divides �� = �3� + �  and therefore 3  divides �  which is a 
contradiction. Q.E.D. 
 
Case � ≡ 2(��� 3) 
The Theorem 1.13 below presents all the non-negative integer solutions of the equation 
�3� + �� = �� in the particular case where  � ≡ 2(���3) and � ≠ 2. This result generalizes 
Theorem 2.1 of [10] where � = 11. 

Lemma 1.12. There is no � ∈ ℤ such that �� ≡ 2(���3). 
Proof: If � ≡ 0(���3),  then �� ≡ 0(���3).  If � ≡ 1(���3)  or � ≡ 2(���3),  then �� ≡
1(���3). Q.E.D. 
 
Theorem 1.13. Let � > 3 be a prime integer such that � ≡ 2(���3).  The equation 

                      �3� + �� = ��,                                                       (6) 
admits a solution in ℕ� if and only if � − 2 is a non-trivial power of 3. In the affirmative 
case, the unique solution is (
, �, �) = (log�(� − 2),0, � − 1). 
Proof: Let (
, �, �) be a solution of (6). By Lemma 1.8 we must have � = 0 or � = 1. If � =
0, it follows from Lemma 1.10 that (log�(� − 2),0, � − 1) is the unique solution in ℕ� of the 
equation �3� + 1 = ��,  since log�(� − 2)  is an integer. Now consider � = 1. By Lemma 
1.11, 
 ≥ 1. So we get 
2 ≡ � ≡ �� − �3� ≡ ��(���3), 
which is a contradiction by Lemma 1.12. Q.E.D. 
 
Remark 1.14. For example, for � = 17,23,41,53,59,71 the equation of the previous theorem 
has no non-negative integer solutions. For � = 5,11,29,83 the solutions are respectively 
(1,0,4), (2,0,10), (3,0,28) and (4,0,82).  
 
Theorem 1.15. The unique solution of the Diophantine exponential equation 

              2 ⋅ 3� + 2� = ��, (
, �, �) ∈ ℕ�,                                        (7) 
 is the ordered triple (
, �, �) = (0,1,2).  
Proof: Let (
, �, �) be a solution of (7). By Lemma 1.8 we must have � = 0 or � = 1. If � =
0, it follows from Lemma 1.9 that 
 > 0 and � it is not equivalent to 0 module 3. In this 
case we have the following equivalence for equation (7) 
2 ⋅ 3� + 1 = �� if and only if 2 ⋅ 3� = (� − 1)(� + 1) = �� − 1. 
 
If � ≡ 1(���3) then � − 1 ≡ 0(���3) and � + 1 ≡ 2(���3), then we have 
� + 1 = �

� − 1 = 3� ⇒ � = 1
3� = 0

, 

 
an absurd. 

If � ≡ 2(���3) then � − 1 ≡ 1(���3) and � + 1 ≡ 0(���3), then we have 
� + 1 = 3�

� − 1 = 2
 ⇒ � = 3

3� = 4
, 

an absurd. 

Now consider � = 1. In this case equation (7) reduces to equation 
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2 ⋅ 3� + 2 = 2(3� + 1) = ��. 
If 
 = 0 we have �� = 4, so � = 2.  Therefore (
, �, �) = (0,1,2) is a solution to equation (7) 
in ℕ�. If 
 > 0 then �� ≡ 2(3� + 1) ≡ 2(���3), a contradiction by Lemma 1.12. Therefore 
(
, �, �) = (0,1,2) is the only solution of equation (7). Q.E.D. 
 
4. When � ≡ 1(��� 3), the equation 

                        �3� + �� = ��, (
, �, �) ∈ ℕ�                                            (8)            
has not yet been completely solved, that is, the behavior of the solutions of these equations 
is not known, whether they have a solution and whether the solutions, if any, are finite or 
infinite. 

Let (
, �, �) be a solution of (8). By Lemma 1.8, � ∈ {0,1}. By Lemma 1.10 we can say 
whether equation (8) will have a solution as long as � + 2 is a non-trivial power of 3.  
Furthermore, that lemma determines the unique solution in this case.  However, for the 
case � = 1 we do not have a conclusive result for the time being. For example, equations 
with � = 7,61 and 547 respectively have the following solutions (3,1,14), (5,1,122) and 
(7,1,1094). We do not know if those three equations have other solutions. 

Remark 1.16. Note that (/, 2) ∈ ℕ� is a solution of 3� + 1 = � ⋅ F� if and only if(/, 1,2�) 
is a solution of �3� + �� = ��, (
, �, �) ∈ ℕ�.  
 
In the next theorem we will show an example whose given equation does not have non-
negative integer solutions. 

Theorem 1.17. The exponential Diophantine equation 
                  13 ⋅ 3� + 13� = ��, (
, �, �) ∈ ℕ�,                                   (9)            

has no solutions. 
Proof:Let (
, �, �) be a solution of (9). By Lemma 1.8, � ∈ {0,1}. First consider � = 0. By 
Lemma 1.10 there are no solutions to the equation in this case, since � + 2 = 15 is not a 
non-trivial power of 3.  
 Suppose there is a solution (
, 1, �) ∈ ℕ� of (9). In this case equation (9) reduces to 13 ⋅
3� + 13 = ��.   Note that 13  divides �  and therefore � = 13F, F ∈ ℕ*.  So we have the 
following equivalence of equations 
13 ⋅ 3� + 13 = �� = 13� ⋅ F�if and only if 3� + 1 = 13 ⋅ F� ≡ 0(���13). 
On the other hand, notice that 3� ≡ 9(���13) and 3� ≡ 1(���13). Therefore the order of 
3 modulo 13 is equal to 3,  that is |3|<� = 3. So write 
 = 3� + G, where � ∈ ℕ and G ∈
{0,1,2}. So we have the following equation 

3� + 1 = 3�4;H + 1 = 274 ⋅ 3H + 1 ≡ 3H + 1(���13) ≡
2(��� 13)
4(��� 13)

10(��� 13)
, if  

G = 0
G = 1
G = 2

, 

an absurd. Q.E.D.  
 
5. Open questions 
The following questions refer to the equation 

              �3� + �� = ��, (
, �, �) ∈ ℕ� with � ≡ 1(��� 3).                                (10) 
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• When � ≡ 1(���3),   what additional conditions must exist on �  for the 
equation (11) to have a solution? 

• If there is a solution for equation (10), how do you know if the number of 
solutions is finite or infinite? 

•  What additional conditions must be imposed on � for there to be a unique 
solution? 
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