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Abstract. In this study, we prove all solutions of the empntial Diophantine equation
3 — 5= 7 where x, y and z are non-negative integers. Thaltréndicates that the
solutions &, y, 2 are (0, 0, 0) and (2, 1, 2).
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1. Introduction

The exponential Diophantine equation is a clasgiictin Number Theory. It has two or
more unknown variables in an equation, and itstemwiumust be integer. Because there is
no general method to find a solution, it challengedhematicians to determine how many

solutions are. In 2004, Mihailescu [4] proved Cais conjecturea” — b’ =1 that it has
exactly one solution whemin(a,b, X, y) >1. Over five years ago, the exponential
Diophantine equation was studied in the foafh—b¥ = Z, wherea, b, X, yand z are
non-negative integers. In 2018, two exponentialpbantine equationg}* - 7° = z°and
4*-17 = 7%, were proved by Rabago [5]. He showed that thetisls to4* — 7" = 72
are (x,¥,2=(0,0,0 and (2,1,3 , and 4 -1 =27" has a unique solution,
(X, ¥,2=(0,0,0. In 2019, Burshtein [2] suggested tit-12 = z* has a positive
integer solution(x, y, 2)=(2,1,9, and presumed th&i* —12 =Z* has no solution

when x > 3. After that, Thongnak et al. [9] proved that theation 2* — 3’ = z° has three
solutions, (X, , Z)D{(0,0,() (Lo)( 2,1)}.. From 2020 to 2022, many articles

studied several equation in the foar — b’ = Z appearingin[1, 6, 10, 11, 12]. Recently,
Tadee [8] showed that the non-negative integertisoisi to the Diophantine equations,

9 -3 =7and13 -7 =2, are(x,y, x) O{(r,2r,0}
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where r € N U {0} and (X, Y, X) D{(0,0,Q} , respectively. In the same year, he proved

the equation3*—p’ =2Z where p is prime. He showed the solutions with some

conditions [7]. These previous works motivatedasttidy the remaining equations.
In this paper, we compute all solutions of the egrdial Diophantine equation

3 -5 = 7* wherex, y and zare non-negative integers.

2. Preliminaries
In this section, we introduce the principle of Nuenfbheory, which plays a critical role in
the proof here.

Definition 2.1. [3] An integerb is said to be divisible by an integar£ 0, in symbols
a| b, if there exists some integersuch thatb = ac. We write a | b to indicate thabis
not divisible bya.

Definition 2.2. [3] If n is a positive integer angcd(a,n) = ], the least positive integer
k such thata“ =1(modn) is called the order of a moduto and is denoted bgrd,a.

Theorem 2.3.[3] If the integera has ordek modulon, thena' =a (modn) if and
only if i = j (modk ).

3. Main result
Theorem 3.1. Let X, Y and zbe non-negative integers. The exponential Diophanti

equation3* -5’ = Z* has only two solutionsX, y, 2 =(0,0,0 and(2,1,2).
Proof: Let X, y and zbe non-negative integer

-5 =27 (1)
We consider four cases as follows:
Case 1 x=y=0. (1) becomeg’ =0, and the solution i§x, y, 2)=(0,0,0.

Case 2 x =0andy >0. By (1), we havez” =1- 5’ < 0, which is impossible.
Case 3 x>0andy = 0. By (1), we obtainz’ =3* -1, so 2" =2(modJ . This is
impossible becaus#’ =0,1( mod 3.

Case 4 x>0andy >0, we separate into two subcases as follows:

Subcase 4.1 is odd. It implies tha8* = 3( mod 4. We get from (1) that

z2=3-1(mod4 or 22 =2(mod 4. It is impossible becaus# =0,1( mod 4.
Subcase 4.2x is even. We letc = 2k, 3 k € Z*. We obtains’ = 3* -z or
5Y = (Bk - z)(3k + z). Then, there existar 0{0,1, 2,3,...y} such that3“ -~ z=5" and

3+z=5" with g < y-a. We obtain
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203 =5 (1+ 57). 2)
Since5 ) 23 and (2), it yields thatr = 0. Thus, we have
2B =1+5. (3)

By (3), if k =1, then we obtairb’ = 5. It is easy to obtain thgt=1, x =2, and

z=3 -1= 2. Hence, another solution (%, y, 2) =(2,1,9.

If k=2, we obtain from (3) thas” = ~1( mod9 which implies that5’ =5°(mod9.
By theorem 2.3 andrd, 5= 6, we gety =3(mod§ yielding y =3+6l = 3(1+ 2),
wherel is a non-negative integer. It is convenient totet 1+ 2|, so y = 3m. By (3),

we have2[B = 1+( §)m or

208 = 12( 8) ~(8) " ++( 8- 8+ | @
Since 7 |126and (4), we have7 | 28 which is impossible. In all cases, the solutions
(x,y,2) of 3-5"=7"are(x,y,2=(0,0,0 and(2,1,2). O

4. Conclusion
We have proved and shown all solutions of the egptial Diophantine equation

3*-5"=7" where x, y and z are non-negative integers. In the proof, the madula
arithmetic principle was applied to obtain all s@ns. We have found that the solutions
are(x,y,2=(0,0,0and(2,1,2).
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