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Abstract. In this paper, two new operations on cubic grapamely, maximal product and
residue product were presented, and some resukging their degrees were introduced.
Likewise, we presented certain types of cubic gsapitiuding totally irregular, strongly
irregular, and strongly totally irregular cubic ghes, which are described for the first time
here.
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1. Introduction

Graph theory serves as an exceptionally benefio@lin solving combinatorial problems
in various fields, such as geometry, algebra, nurtiteory, topology, and social systems.
A graph basically holds a model of relations, and used to depict the real-life problems
encompassing the relationships among objects. ffresent the objects and the relations
between objects, the graph vertices and edgesnapioged, respectively. Fuzzy graph
models are helpful mathematical tools in orderddrass the combinatorial problems in
various fields incorporating research, optimizataigebra, computing, and topology. Due
to the natural existence of vagueness and ambjduitgy graphical models are noticeably
better than graphical models. Originally, fuzzy thetory was required to deal with many
multifaceted issues, which are replete with incatelinformation. In 1965, fuzzy set
theory was first suggested by Zadeh [42]. Fuzzy thebry is a highly powerful
mathematical tool for solving approximate reasoselgted problems. Jun et al. [11]
introduced cubic sets. Later on, Muhiuddin et &-16] applied the notion cubic sets on
different aspects. The first description of fuzzgghs was proposed by Kafmann [12] in
1993, taken from Zadeh's fuzzy relations [43-44awever, Rosenfeld [31] described
another detailed definition, including fuzzy vertard fuzzy edges and various fuzzy
analogs of graphical theoretical concepts, inclgdiaths, cycles, connectedness, etc.
Akram et al. [1,2] presented new definitions ofZygraphs. Rashmanlou et al. [22-29]
investigated different concepts on cubic graphgueagraphs, and bipolar fuzzy graphs.
Samanta et al. [32,33] introduced fuzzy competitgmaphs and some properties of
irregular bipolar fuzzy graphs. Borzooei and Rashima [3-6] studied new concepts on
vague graphs. Gani and Radha [17,18] recommeretpdar fuzzy graphs and totally
regular fuzzy graphs. Kumaravel and Radha [30]ritestt the concepts of the edge degree
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and the total edge degree in regular fuzzy grapatha and Gani defined neighborly
irregular fuzzy graphs and highly irregular fuzaaphs. Sunitha et al. [34,35] presented
new concepts for fuzzy graphs. Talebi et al. [3f+#presented several concepts on
interval-valued fuzzy graphs, intuitionistic fuzgsaphs, and bipolar fuzzy graphs. Shoaib
et al. [36] given some results on pythagoreanyiuraphs. Ghorai et al. [7-10] studied
novel concepts in fuzzy graphs. Pal et al. [194B%Estigated several results on fuzzy
graphs.

In this research, two new operations on cubic ggaphmely, maximal product
and residue product were presented, and some gesmticerning their degrees were
introduce. Also, we presented certain types of cgpaphs, including totally irregular,
strongly irregular and strongly totally irregulanxc graphs.

2. Preliminaries
A fuzzy graph is of the frond = (¥, ¢) which is a pair of mappingg: vV - [0,1] and
¢:VxV - [0,1] as is defined agp(m,n) < yYp(m) AyY(n), vmmn eV, and¢ is a
symmetric fuzzy relation o andA denotes minimum.

Let X be a non-empty set. A functignX — [I] is called an interval-valued fuzzy
set (shortly, IVF set) iX. Let[I]* stands for the set of all IVF setsXn For everyd €
[I1¥ andx € X, A(x) = [A~(x), AT (x)] is called the degree of membership of an element
x € A, whered™: X —» I andA™: X — I are fuzzy sets i which are called a lower fuzzy
set and upper fuzzy set iy respectively. For simplicity, we denate= [A~,A"]. For
everyA, B € [I1%, we defined € B if and only ifA(x) < B(x), for allx € X.

Definition 2.1. LetA =[A",A*],and B = [B~, B*] betwo interval valued fuzzy setsin
X. Then, we define

rmin{A(x), B(x)} = [min{A~ (x), B~ (x)}, min{A* (x), B* (x)}],
rmax{A(x), B(x)} = [max{A~(x), B~ (x)}, max{A*(x), B* (x)}].

Definition 2.2. Let x be a non-empty set. By a cubic set in X, we mean a structure A =
{(x, A(x), A(x): x € X)} inwhich A isaninterval-valued fuzzy setsin X and A isa fuzzy set
in X. A cubic set A = {{m,A(m),A(m):m € X)} is smply denoted by A = (4, 1). The
collection of all cubic setsin X is denoted by CP(X).

Definition 2.3. A cubic graphisatriple{ = (¢*,P,Q) where G* = (V,E) is a graph,
P = (fip,Ap) is a cubic set on V and Q = ({iy, 1¢) is a cubic set on V x V so that
fig(mn) < rmin{fip(m), il (n)} and Ao (mn) = max{Ap(m), 1p(n)}.

3. New concepts of cubic graphs

Definition 3.1. Let {; = (P;,Q,) and ¢, = (P,, Q,) be two cubic graphs with underlying
crisp graphs G; = (V4,E;) and G, = (V,, E,), respectivdly. ; *{, = (P,Q) is called
maximal cubic graphwith underlyingcrispgraph G = (V,E),whereV =V, x V, andE =
{(my,ny)(my,ny)| my = my,nyn, € E; or ny = ny,mym, € Eq}.
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(Apl * APZ)(m n) = mm{lpl (m), Ap, (m)},
forall (mn) eV =V, xV,

{(HQl .UQZ)((m1 ny)(my, nz)) = rmax (HP1 (my), Ao, (n1n2))
{(

{(upl fi5,)(m, n) = rmax{jip, (m), fiy,(n)},
®

(i) (/1Q1 * AQZ)((ml ny)(my, nz)) min (APl(ml) AQZ(nan))
m,, nin, € Ey,

(HQ1 .LlQ2 ((m1 ny)(my, nz)) = rmax (HPZ (ny), .LlQ1 (m1m2))

(itd) (AQ *AQZ)((WH ny)(my, "2)) min (APZ (ny), /1Q1(m1m2))
mlmz € E,ny = n,.

Theorem 3.2 The maximal product of two cubic graphs {; and {,, isa cubic graph, too.
Proof: Let{; = (P, Q,) and{, = (P,, Q,) be two cubic graphs and
((my,mz)(ny,m2)) € E; X E,. Then, by Definition 3, we have two cases:
@)my =ny =m
(g, * i, ) ((m, my) (m, my)) = rmax (T, (), i, (mymy) )
< rmax {;1;1 (m),rmin{ﬂ;2 (mz),ﬂaz(nz)}}
= rmin {rmax{[i;1 (m), i, (mz)}, rmax{,a};1 (m), itp, (nz)}}
= rmin{(, * @,) (m,my), (%, * @7, (m,n,)),
(AQl * AQZ)((m' my)(m, nz)) = min{Ap, (m)»lpz (mzny)}
= min {Apl (m), max{)LP2 (my), Ap, (nz)}}
= max {min{/lp1 (m), Ap, (mz)}, min{/’lp1 (m), 4p, (nz)}}
= max{()LP1 * APZ)(m, m,), (/1,;1 * APZ)(m, nz)}.
(@ifmy,=n,=12
(g, * ) ((my, 2) (ny,2)) = rmax{iig, (myn, ), 7, (2)}
< rmax{rmin{ﬂfo’1 (my), fip, (nl)},ﬂfo’2 (z)}
= rmin {rmax{ﬂ}?l (my), g, (Z)}, rmax{ﬁ};l (n4), fip, (Z)}}
= rmin{(iZp, * i, ) (my, 2), (@7, * f1p, ) (1, 2)},
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(Aql * AQZ)((mlnz)(an)) = min{)lQl ("11711):/1102 @)}
> min{max{/’lp1 (my), Ap, (nl)}, Ap, (Z)}
= max {min{lpl (my), 2p, (z)}, min{)LP1 (n1), 1p, (Z)}}
= max{()Lp1 * Apz)(ml,z), (Apl * APZ)(nl, Z)}.

Hence, * {, is a cubic graph(J

Definition 3.3. A Cubic graph { = (P, Q) isstrong if: jig(mn) = jip(m) A
up(n), Aq(mn) = Ap(m) Vv Ap(n), for all mn € E.

Theorem 3.4 The maximal product of two strong cubic graphs ¢; and {,, isa strong
cubic graph.
Proof: Let{; = (P, Q,) and{, = (P,, Q,) be two strong cubic graphs. Then

13, (mymy) = rmin (@G, (my), @, (m3) ), g, (mymy) = max (4p, (my), A, (my)), for
anymym, € E; andgg,(nyn,) = rmin (ﬂ;l (nl).ﬂ};(nz)), Ao, (niny) =
max (/’lp1 (n1), Ap, (nz)), for anyn,n, € E,. Then, proceeding according to the definition

of maximal product,
(l) if ng=ny andm1m2 € Ez. Then,

(1151 * lr(gz)(("pmﬂ("z:mz)) = rmax{ﬁ;l ("1).1152(7”1"12)}
= rmax {ﬂ;l (ny), rmin{,ti;2 (my), fip, (mz)}}
= rmin {rmax{ﬂ}J1 (n1), ip, (ml)}, rmax{ﬂ};’1 (ny), ip, (M, )}}
= rmin{(@, * iip,) (ng, my), (fip, * fip, ) (1, m3)},
()LQ1 * AQZ)((nlvml)(nZ'mZ)) = min{Ap, (n1), 4¢,(M1m,)}
= min {Apl (ny), max{/lp2 (my), 2p, (mz)}}
max {min{/lpl (n1),1p, (ml)}, min{/lp1 (n1), Ap, (mz)}}
= max{(lpl * APZ)(nl,ml), (Apl * APZ)(nlth)}'

(1151 * .IIVQZ)((nll my)(ny, mz)) = rmax{ﬂal (nyny), .117;2 (my)}
= rmax{rmin{ﬁfo’1 (n1), fip, (nz)}, fp, (mz)}
= rmin {rmax{ﬁ}’l (n1), ip, (mz)}, rmax{ﬂ};’l (n2), ip, (mz)}}

= rmin{(iZp, * Iy, ) (01, m2), (A, * fip,) (n2, M)},
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(/1Q1 * AQZ)((nllml)(HZ'mZ)) = min{Ay, (n1n,), 1p, (M)}
= min{max{/lpl (n4), Ap, (nz)}; Ap, (mz)}
= max {min{/lpl (n1), Ap, (mz)}, min{/lp1 (n2), Ap, (mz)}}
= max{(lpl * APZ)(nlth)t (Apl * APZ)(nZImZ)}'
Therefore; * {, is a strong cubic grapi.]

Remark 3.5 If the maximal product of two cubic graphs ({; * {,) isastrong, then {; and
{, need not to be strong, in general.

Definition 3.6. A cubic graph ¢ is called completeif: fig(mn) = p(m) A fip(n),
Ao(mn) = Ap(m) v Ap(n),forallmn e V.

Remark 3.7. The maximal product of two complete cubic graphsis not a complete cubic
graph, in general. Because we do not include the case (m,,m,) € E; and (nq,n,) € E, in
the definition of the maximal product of two cubic graphs.

Remark 3.8 The maximal product of two complete cubic graphsis strong cubic graph.

Definition 3.9. Theresidue product {; « ¢, of two cubic graphs{; = (P, Q;) and {, =
(P,,Q,) isdefined as:

(Ap, * 2p,)((my,m3)) = min{Ap, (my), Ap,(M,)},
for all (my,my) €Vy XV,

{(1151 * ler)((mllmZ)(nlwnz)) = fig, (myny),
()

{(ﬂa * ip,)((my, my)) = rmax{jiy, (my), i1z, (M;)},
(i)

(Aq, * Ag,)((my,my)(n4,m2)) = Ag, (myny),
fOT all mlnl € Ellmz * nz.

Example 3.10 Consider the cubic graphs ¢; and ¢, asin Figure 1. The residue product

of ¢; and {, ({7 * {») shownin Figure 2.
Definition 3.11. Let ¢ be a cubic graph. The degree of a vertex m in { is defined by:

de(m) = (Zm;enﬁ‘é (mn), ¥m=n Ag (mn)) = (dP(m),d%(n))

nev nev

Definition 3.12. An cubic graph ¢ issaid to bean irregular cubic graph if thereisa
vertex which is adjacent to vertices with distinct degrees.

Definition 3.13. A cubic graph { issaid to beatotally irregular cubic graphif 3 a
vertex which is adjacent to vertices with different total degree.

Definition 3.14. A cubic graph ¢ issaid to bea strongly irregular cubic graph if every
vertex has a different degree.
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u([0.1,0.2],0.3) v([0.2,0.3], 0.4) 2([0.1,0.3],0.5)

a
® L ]

([0.1,0.2],0.5)

([0.1,0.2],0.6) ([0.1,0.21,0.7)

» L]
x([0.2,0.4],0.5) w([0.2,0.4], 0.6)
G1 G2

Figure 1: Cubic graphs ¢; and ¢,

([0.2,0.3],0.4) ([0.2,0.4],0.5)
(v,2) (x,2)

(10.1,0.3],0.3)

(u,2)

([0.2,0.4],0.3) ([0.2,0.4],0.4) ([0.2,0.4],0.5)

(u, w) (v, w) (x, w)

Figure 2: Residue product of two cubic graphs.

Definition 3.15. A cubic graph ¢ issaid to be a strongly totally irregular cubic graph if
every vertex has a different total degree.
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Proposition 3.16 The residue product of two cubic graphs ¢; and {, isa cubic graph.

Proof. Let{; = (P, Q;) and{, = (P,, Q,) be two cubic graphs and
((ml,mz)(nl,nz)) € E; X E,. If myn,; € E; andm, # n,, then we have:

(.Lial * @)((mpmz)(npnz)) = @(m1n1)
< rmin{y, (my), @, (n,)}
< rmax{rmin{ﬁ;1 (my), fip, (n1)}, rmin{fip, (mz),ﬂ;z(nz)}}
= rmin{rmax{@y, (my), @7, (1)}, rmax{ifs, (m2), @7, (n2)}}

= mm((ﬂ;l ] ,lI;z)(mp mz)z (/I;l ° ﬁ;z)(nlan)}l

(AQ1 * /1Q2 ) ((mp my)(ny, "2)) = /1Q1 (myny)
= max{Ap, (M), Ap, (n1)}
2 min{max{/lpl (m1), Ap, (n1)}, max{Ap,(m;), Ap, ("2)}}
= rmax{min{lpl (m1), Ap, (n1)}, min{Ap, (m3), Ap, (nz)}}
= max((/lpl * APZ)(mll my), (/1131 * APZ)(TH: nz)}-

(]

4. Conclusion

Cubic graphs are highly practical tools for thedgtaf different computational intelligence
and computer science domains. Cubic graphs havg apptications in different sciences
such as topology, natural networks, and operatsearch. Operations are conveniently
used in many combinatorial applications; hencéimpaper, two new operations on cubic
graphs, namely, maximal product, and residue progeace presented, and some results
concerning their degrees were introduced. In cwrémwork, we will discuss several types
of domination in cubic graphs.
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