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Abstract. In this study, we introduce the domination Kepler Banhatti and modified 

domination Kepler Banhatti indices and their corresponding exponentials of a graph. 

Furthermore, we compute these indices for some standard graphs, French windmill graphs. 

Also we obtain some properties of domination Kepler Banhatti index. 
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1. Introduction 

In this paper, G denotes a finite, simple, connected graph, V(G) and E(G) denote the vertex 

set and edge set of G. The degree du of a vertex u is the number of vertices adjacent to u. 

We refer [1], for other undefined notations and terminologies. 

 Graph indices have their applications in various disciplines of Science and 

Technology. For more information about graph indices, see [2].  

 The domination degree  
dd u [3] of a vertex u in a graph G is defined as the 

number of minimal dominating sets of G which contains u. 

            The modified first domination Zagreb index [3] of a graph is defined as  

      
 

*
1 .d d

uv E G

DM G d u d v


   

Ref. [3] was soon followed by a series of publications [4, 5, 6, 7, 8, 9]. 

The domination Sombor index was introduced in [10] and it is defined as 

     
 

2 2
.d d

uv E G

DSO G d u d v


 
 

The reciprocal domination product connectivity index [11] of a graph G is defined as  

     
 

.d d

uv E G

RDP G d u d v


   

The Kepler Banhatti index was introduced by Kulli in [12] and it is defined as 
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   
 

2 2[ ].u v u v

uv E G

KB G d d d d


   
 

Motivated by the definition of Kepler Banhatti index, we introduce the domination Kepler 

Banhatti index of a graph and it is defined as 

          
 

2 2
[ ].d d d d

uv E G

DKB G d u d v d u d v


   
 

Considering the domination Kepler Banhatti index, we introduce the domination Kepler 

Banhatti exponential of a graph G and defined it as 

 
        

 

2 2

, .d d d dd u d v d u d v

uv E G

DKB G x x
  



 
 

We define the modified domination Kepler Banhatti index of a graph G as  

 

         
2 2

1
.m

uv E G
d d d d

DKB G

d u d v d u d v



  


 
Considering the modified domination Kepler Banhatti index, we introduce the modified 

domination Kepler Banhatti exponential of a graph G and defined it as 

 
        

 

2 2

1

, .d d d dd u d v d u d vm

uv E G

DKB G x x
  



 
 

Recently, some Kepler Banhatti indices were studied in [13, 14, 15]. 

In this paper, the domination Kepler Banhatti index, modified domination Kepler Banhatti 

index and their corresponding exponentials of certain graphs are computed.

 

 

2. Results for some standard graphs  

Proposition 1. If  nK  is a complete graph with n vertices, then         

 
 2 2 ( 1)

.
2

n

n n
DKB K

 
  

Proof: If  nK  is a complete graph, then dd(u) =1. From definition, we have   

        
 2 2( 1) 2 2 ( 1)

[ 1 1 1 1 ] .
2 2

n

n n n n
DKB K

  
    

                  

                         

 

Proposition 2.  Let Km,n   be a complete bipartite graph with 2 ≤ m≤ n. Then 

       2 2

,    [ 2 1 1 ].m nDKB mn m n m nK         

Proof: Let G=Km,n , m, n≥2 with  
dd u = m+1 

                                                                = n+1,   for all u∈ V(G). 

From definition, we obtain 

       2 2

,    [ 2 1 1 ].m nDKB mn m n m nK                    
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We obtain the domination Kepler Banhatti exponentials of  nK  and Km,n  .  

Proposition 3. The domination Kepler Banhatti exponentials of  nK  and Km,n  are given 

by  

(i)          ,nDKB K x
 2 2( 1)

.
2

n n
x 



 

 (ii)         
     2 2

[ 2 1 1 ]
, , .m n m n

m nDKB K x mnx      
 

 

3. Mathematical properties 

Theorem 1. Let G be a simple connected graph. Then  

                                         *

1

1
1

2
DKB G DM G

 
  
 

 

with equality if G is regular. 

Proof: By the Jensen inequality, for a concave function f(x),  

𝑓 (
1

𝑛
∑𝑥𝑖) ≥

1

𝑛
∑𝑓(𝑥𝑖) 

with equality for a strict concave function if  x1  = x2  = …= xn.    Choosing   f(x) = √x, we 

obtain 

                                   
        2 2

2 2

d dd d
d u d vd u d v 

  

thus                          

                  
2 2 1

.
2

d d d d d d d dd u d v d u d v d u d v d u d v        

Hence          

             
  

2 2 1
[ ] 1 .

2
d d d d d d

uv E G uv E G

d u d v d u d v d u d v
 

 
      

 
   

Thus                                   *

1

1
1

2
DKB G DM G

 
  
 

 

with equality if G is regular. 

 

Theorem 2. Let G be a simple connected graph. Then  

                                *

11 2 2 .DKB G DM G RDP G    

Proof: It is known that for 1≤x ≤ y, 

                            ( ) ( )
2 2

,
2

x y
f x y x y xy

+
= + - -   

is decreasing for each y. Thus ( ) ( ), , 0.f x y f y y³ =  Hence 

                                   
2 2

2

x y
x y xy

+
+ - ³  
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or                                    
2 2

.
2

x y
x y xy

+
£ + -                                   

Put x=  
dd u  and y=  

dd v , we get 

                    
   

        
2 2

2

d d
d d d d

d u d v
d u d v d u d v


    

                                
2 2

2[ ]d d d d d dd u d v d u d v d u d v                                                    

which implies 

                 
2 2

d d d d d dd u d v d u d v d u d v        

                                                                2[ ]d d d dd u d v d u d v       

                  
  

2 2
[ ] 1 2d d d d d d

uv E G uv E G

d u d v d u d v d u d v
 

          

                                                                      
 

2 d d

uv E G

d u d v


                                                                                                                                                            

Thus                    *

11 2 2 .DKB G DM G RDP G    

 

Theorem 3. Let G be a simple connected graph. Then  

                                       *

12 .DKB G DM G  

Proof: It is known that for 1≤x ≤ y, 

                                       2 2x y x y+ < +  

                                ( ) ( )2 2 2 .x y x y x y+ + + < +  

Setting x=  
dd u  and y=  

dd v , we get 

                                   
2 2

2 .d d d d d dd u d v d u d v d u d v      

Thus                 
  

2 2
[ ] 2 .d d d d d d

uv E G uv E G

d u d v d u d v d u d v
 

       

 Hence                           *

12 .DKB G DM G  

 

Theorem 4. Let G be a simple connected graph. Then  

                                       *

1 .DKB G DM G DKS G   

Proof: We have 

                     
  

2 2
[ ]d d d d d d

uv E G uv E G

d u d v d u d v d u d v
 

     
  

                                                           

   
 

2 2

d d

uv E G

d u d v


 
    

Hence                           *

1 .DKB G DM G DKS G 
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4. Results for French Windmill graphs 

The French windmill graph m

nF  is the graph obtained by taking 𝑚 ≥ 3  copies of 𝐾𝑛,𝑛 ≥ 3 

with a vertex in common. The graph m

nF  is presented in Figure 1. The French windmill 

graph 
3

mF  is called a friendship graph. 

 
Figure 1: French windmill graph m

nF  

 Let F be a French windmill graph m

nF . Then  

 
dd u =1,       if u is the center vertex, 

             =   1
1

m
n


 ,        otherwise. 

Theorem 5. Let F be a French windmill graph m

nF .  Then 

              
    

 1 2 1
1 [ 1 1 1 1 ]

m m
DKB F m n n n

 
        

                              
 1

[( 1 / 2) 1 ][ 2 2 1 ].
m

mn n m n n


     

      

                           

Proof: In F, there are two sets of edges. Let E1 be the set of all edges which are incident 

with the centre vertex and E2 be the set of all edges of the complete graph. Then 

                 
 

2 2
[ ]d d d d

uv E F

DKB F d u d v d u d v


     

                           
    

 1 2 121 [ 1 1 1 1 ]
m m

m n n n
 

        

                          [( 1 / 2) 1 ]mn n m n           

                          
 

 
    

 
 

 1 1 2 1 2 1
[ 1 1 1 1 ]

m m m m
n n n n

   
        

                          
    

 1 2 1
1 [ 1 1 1 1 ]

m m
m n n n

 
        

                            
 1

[( 1 / 2) 1 ][ 2 2 1 ].
m

mn n m n n


     

 

                

 

Corollary 5.1.  Let 3
mF be a friendship graph. Then 

  



V.R.Kulli 

28 

 

         
          1 2 1 1

3 2 [ 1 2 1 2 ] 2 2 2 .m m m mDKB F m m                                    

 

5. Conclusion 

In this paper, the domination Kepler Banhatti index, modified domination Kepler Banhatti 

index and their corresponding exponentials are defined and studied. 
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