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Abstract. In this article, for prime p with p ≡ 3, 5 (mod 8), we consider the Diophantine 

equation Px + (p+1)y + (2p+1)z = w2, where x, y, z and w are non-negative integers. The 

result indicates that if p ≡ 3, 5 (mod 8) and the equation has a solution, then x = 0 and z is 

odd. If p ≡ 5 (mod 8) and the equation has a solution, then 0x  and 1y   according to 

the following conditions: (i) if y =1 then z is even, (ii) if y ≥ 2, then z is odd. Moreover, if 

p ≡ 5, 19 (mod 24), then the equation has no solution. 
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1. Introduction 

In 2014, Bacani and Rabago [1] proved that  0, 0,1, 3 ,  1,1, 0, 3 and  3,1, 2, 9  are the 

only solutions  , , ,x y z w  to the Diophantine equation 23 5 7x y z w    in non-negative 

integers. After that, in 2019, Burshtein [2] found some non-negative integer solutions of 

the Diophantine equation   21
yxp p z   , where p  is a prime number. Burshtein [3, 4] 

presented all solutions of the Diophantine equations    1 2
y zx np p p M      ,when 

p  is a prime number, 1 , , 2x y z   and 1, 2n  . In 2022, the non-negative integer 

solutions of the Diophantine equation 
2

1 2 3

x y zp p p M   ,when  1 2 3, ,p p p  is a prime 

triplet of the forms  , 2, 6p p p  and  , 4, 6p p p  for 1 , , 2x y z   is 

investigated [7]. In 2023, Laipaporn, Kaewchay and Karnbanjong [6] found some 

conditions for non-existence of non-negative integer solutions of the Diophantine 

equation 2x y za b c w   . Recently, in 2024, Siraworakun and Tadee [8] also showed 

some conditions for non-existence of non-negative integer solutions  , , ,x y z w  of the 

Diophantine equation 29 9x y zn w   , where n  is a positive integer.    
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 From the above research studies, we are interested in solving the Diophantine 

equation 

                                           21 2 1
y zxp p p w     ,                                  (1) 

where p  is a prime number with  3,5 mod8p   and , , ,x y z w are non-negative integers. 

 

2. Preliminaries 

In the beginning of this section, we review the definition and properties of the quadratic 

residue and the Legendre symbol. 

 

Definition 2.1. [5, p. 171] Let p  be an odd prime number and a  be an integer such that 

 gcd , 1a p  . If the quadratic congruence  2 modx a p  has an integer solution, then 

a  is said to be a quadratic residue of p . Otherwise, a  is called a quadratic non-residue 

of p . 

 

Definition 2.2. [5, p. 175] Let p  be an odd prime number and a  be an integer such that 

 gcd , 1a p  . The Legendre symbol, 
a

p

 
 
 

 , is defined by 

1 if is a quadratic residue of

1 if is a quadratic non-residue of .

a pa

a pp

  
  

 
 

 

Theorem 2.1. [5, p. 180] If p  is an odd prime number, then 

 

 

 

1 if 1,7 mod82

1 if 3,5 mod8 .

p

pp

   
  

   
 

 

Theorem 2.2. [5, p. 189] If 3p   is an odd prime number, then 

 

 

 

1 if 1,11 mod123

1 if 5,7 mod12 .

p

pp

   
  

   
 

 

 Moreover, there is an important theorem that can be used to find the non-negative 

integer solutions of the Diophantine equation (1), which was proved by Zhang and Li [9] 

in 2024. 

 

Theorem 2.3. [9] The Diophantine equation 22 7 y z   has a unique non-negative 

integer solution    , 1, 3y z  . 

 

3. Main results 
In this section, we present our results. 
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Lemma 3.1. Let p  be a prime number with  3,5 mod8p  . If the Diophantine equation 

(1) has a non-negative integer solution  , , ,x y z w , then 0x  . 

Proof: Let , ,x y z  and w  be non-negative integers such that the equation (1) is true. 

Assume that 0x  . Then 1x   and so      0 1 1 2 mod1 2 1
y zx

p pp p        . 

From the equation (1), it follows that  2
2 mod pw  . Therefore 

2
1

p

 
 

 
. By Theorem 

2.1, we get  1,7 mod8p  . This is impossible since  3,5 mod8p  . Thus 0x  .                      

 

Theorem 3.2. Let p  be a prime number with  3 mod8p  . If the Diophantine equation 

(1) has a non-negative integer solution  , , ,x y z w , then 0x  and z  is odd. 

Proof: Let , ,x y z  and w  be non-negative integers such that the equation (1) is true. By 

Lemma 3.1, we get 0x  . Next, we consider the following cases: 

Case 1. 0y  . From the equation (1) and  3 mod8p  , we have    2
2 mod81

z
w    . 

Assume that z is even. Then  2
3 mod8w  . This is impossible since  2

0,1, 4 mod8w  . 

Therefore, z is odd.  

Case 2. 1y  . From the equation (1) and  3 mod8p  , we have    2
5 mod81

z
w    . 

Assume that z is even. Then  2
6 mod8w  . This is impossible since  2

0,1, 4 mod8w  . 

Therefore, z is odd.  

Case 3. 2y  . From the equation (1) and  3 mod8p  , we have    2
1 mod81

z
w    . 

Assume that z is even. Then  2
2 mod8w  . This is impossible since  2

0,1, 4 mod8w  . 

Therefore, z is odd.  
 

Corollary 3.3. If p  is a prime number with  3 mod8p  , then the Diophantine equation  

                                                      
2 21 2 1

y zxp p p w                                       (2) 

has no non-negative integer solution. 

Proof: Assume that there exist non-negative integers , ,x y z  and w  such that the 

equation (2) is true. It implies that  , ,2 ,x y z w  is a non-negative integer solution of the 

equation (1). By Theorem 3.2, we obtain that 2z is odd, which is a contradiction.  Hence, 

the equation (2) has no non-negative integer solution. 

 

Corollary 3.4. If 3p  , then the Diophantine equation (1) has a unique non-negative 

integer solution    , , , 0, 0,1, 3x y z w  . 

Proof: Let , ,x y z  and w  be non-negative integers such that the equation (1) is true. 

Since 3p   and Theorem 3.2, we obtain that 0x  and z  is odd. Next, we consider the 

following cases: 
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Case 1. 0y  . From the equation (1), it implies that 22 7z w  . By Theorem 2.3, we 

have    , 1, 3z w  . Thus,    , , , 0, 0,1, 3x y z w  .  

Case 2. 1y  . From the equation (1), we have 25 7z w  . It easy to check that 1z  . 

Therefore,  2 5 mod7w  . This is impossible since  2 0,1, 2, 4 mod7w  .  

Case 3. 2y  . From the equation (1), it follows that  2 1 4 7 1 7 mod16y z zw      . 

Since z  is odd, we get  2 8 mod16w  . This is impossible since  2 0,1, 4, 9 mod16w  .  

From the three cases above,    , , , 0, 0,1, 3x y z w   is the unique non-negative integer 

solution of the equation (1) for 3p  . 

 

Theorem 3.5. Let p  be a prime number with  5 mod8p  . If the Diophantine equation 

(1) has a non-negative integer solution  , , ,x y z w , then 0x  and 1y   according to the 

following conditions: 

(i) if 1y  , then z is even, 

(ii) if 2y  , then z is odd. 

Proof: Let , ,x y z  and w  be non-negative integers such that the equation (1) is true. By 

Lemma 3.1, we get 0x  . Next, we consider the following cases: 

Case 1. 0y  . From the equation (1) and  5 mod8p  , we get  2
2 3 3,5 mod8

zw    . 

This is impossible since  2
0,1, 4 mod8w  . 

Case 2. 1y  . From the equation (1) and  5 mod8p  , we have  2
7 mod83zw   . 

Assume that z is odd. Then  2
2 mod8w  . This is impossible since  2

0,1, 4 mod8w  . 

Thus, z is even.  

Case 3. 2y  . From the equation (1) and  5 mod8p  , we have  2
5 mod83zw   . 

Assume that z is even. Then  2
6 mod8w  . This is impossible since  2

0,1, 4 mod8w  . 

Thus, z is odd.  

Case 4. 3y  . From the equation (1) and  5 mod8p  , we have  2
1 mod83zw   . 

Assume that z is even. Then  2
2 mod8w  . This is impossible since  2

0,1, 4 mod8w  . 

Thus, z is odd.  
 

Corollary 3.6. Let p  be a prime number with  5 mod8p  . If the Diophantine equation 

(2) has a non-negative integer solution  , , ,x y z w , then 0x  and 1y  . 

Proof: Let , ,x y z  and w  be non-negative integers such that the equation (2) is true. Then 

 , ,2 ,x y z w is a non-negative integer solution of the equation (1). Since 2z is even and 

Theorem 3.5, we obtain that 0x  and 1y  . 

 

Corollary 3.7. If 13p  , then the Diophantine equation (2) has a unique non-negative 

integer solution    , , , 0,1, 0, 4x y z w  . 
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Proof: Let , ,x y z  and w  be non-negative integers such that the equation (2) is true. 

Since 13p   and Corollary 3.6, we obtain that 0x  and 1y  . From the equation (2), 

we get 2 215 27 z w  . It follows that   27 27 15z zw w   . Since 27 27z zw w   , 

we consider the following cases: 

Case 1. 27 1zw   and 27 15zw  . Then 2 27 14z  or 27 7z  . This is impossible. 

Case 2. 27 3zw   and 27 5zw  . Then 2 27 2z  or 27 1z  . It implies that 0z   

and so 4w . Hence,    , , , 0,1, 0, 4x y z w  is the unique solution of the equation (2) for 

13p  . 

 

Theorem 3.8. Let p  be a prime number with  5, 19 mod 24p  .Then, the Diophantine 

equation (1) has no non-negative integer solution. 

Proof: Assume that there exist non-negative integers , ,x y z  and w  such that the 

equation (1) is true. Since  5, 19 mod 24p  , we get  3, 5 mod8p  and  5,7 mod12p  . 

By Lemma 3.1, we obtain that 0x  . Then      1 1 1 3 mod1 2 1
y zx

p pp p        . 

From the equation (1), we have  2
3 mod pw  . Thus 

3
1

p

 
 

 
. By Theorem 2.2, we get 

 1,11 mod12p  . This is impossible since  5,7 mod12p  .                      

 

Corollary 3.9. If n  is a positive integer and p  is a prime number with  5, 19 mod 24p  , 

then the Diophantine equation  

                                                       21 2 1
y zx np p p w                                           (3) 

has no non-negative integer solution. 

Proof: Assume that there exist non-negative integers , ,x y z  and w  such that the 

equation (3) is true.  Then  , , , nx y z w  is a non-negative integer solution of the equation 

(1). This is impossible by Theorem 3.8.  
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