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Abstract. It has been shown in [2] that the title equatios hdinitely many solutions
when p =2 and also whermp = 3. In this article, it is established and desimted for
each primep > 3, that the equation has a solution for eaold every integer> 1.
We also discuss separately two distinct paldi cases of the equation. One is related
to the Sophie Germain conjecture, and the otheret@oldbach conjecture.
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1. Introduction
The history of Diophantine equations dates backntiquity. There are endless varieties
of Diophantine Equations, and there is no genesthod of solution.
Consider the equation
p+g'=7 1
where p is prime, and 1 q is an odd integer. The values y, z, and all other values
occurring in our discussiaepresent positive integers.

We now introduce the relation between eguatl) and Sophie Germain primes.

A Sophie Germain (1776 — 1831) prime is imer p such that @+ 1 is also
prime. From [5] we also cite: As of 29.2.201€he largest known proven Sophie
Germain primep is

p = 26181634024172'%°%0%°_ 1
having 388342 decimal digits.

The well-known Sophie Germain conjecture., there exist infinitely many
Sophie Germain primes is an extremely difficulthdesn which is still unsolved. Under
the assumption that the Sophie Germain conjedarimdeed true, i.e., there exist
infinitely many Sophie Germain primes, the authdl ¢stablished that each Sophie
Germain prime withx = 2 and y = 1 determines a solution of equation (1). This i
discussed in Section 2.

The author [2] has proved fgr=2 and also fop =3 that equation (1) has
infinitely many solutions for each integer> 1 when y=1 ory= 2. Therefore, the
main objective of this article is to show in pautar: First (Section 2) that equation (1)

229



On the Diophantine Equatiop” + ¢ = 7

has infinitely many solutions for each primg> 3, and secondly (Section 3) that a
relation exists between a certain case of equétipand the Goldbach conjecture.

2. Themain result
In this section, in Theorem 2.1 it is establisheddvery primep > 3 that equation (1)
has a solution for each integgr> 1.

Theorem 2.1. For each and every prim@ > 3, the equation
p+g' =7 qgodd, y=1 )
has a solution for every integer> 1, i.e., the equation has infinitely many solutions.
Proof: We shall distinguisttwo cases in (2), namely.:= 2n and x = 2n+1 for every
integern>1. The casex=1 will then be demonstrated.
Suppose that = 2n. From (2) we havg® + q* = Z or

() +q=72 3
Set the odd valueg] as q=2p"+ 1. ThenZ = (@"+ 1% Thus, equation (3) has the

form
(p") +2p"+1 = @"+1)
which is an identity valid for each primp, and every integan > 1. Hence, the solution
of equation (1) for each primg> 3 and all even values> 2 is given by
P axYy2=@2p"+1nN1 p" +1).
The above solution and the Sophie Germamgs are connected as follows.
When x =2 (n= 1), the solution yields
Paxy 2=@ ptl, 2, 1,p+1).
If pisa Sophie Germain prime, then by definitigee 2p+1 is also prime. Moreover,
the primes p = 2 and p = 3 are also Sophie Germain primes. Evidemigch
Sophie Germain prim@ > 2 satisfies the above solution of equation (1)déinthe
assumption that there exist infinitely many SopB&rmain primes, it then follows that
the above solution is valid for each and every quaie. Hence, wherx = 2 equation
(1) has infinitely many solutions.
Suppose thak = v+ 1. From (2) we obtain
p2n+1 + ql - A
Each primep > 3 is either of the form NI+ 1 or of the form M + 3, whereN > 1
is an integer. We shall consider two cases as\istl
(@ p = N+1,
(b) p = MN+3.

4

(@) Suppose thatp=4N + 1. Let p, henceN be fixed. For every fixed valua in
(4), there exists a respective fixed intelesatisfying p*™* = (4N + 1) ™' = 4/ + 1,
where V is odd or even. LeT be aninteger. Iig = 4T + 1, the left-hand side of (4)
is clearly not a square. Thereforg = 4T + 3. Then (4) vyields

W+ 1)+ (A +3) = 4y +T+1) =7 (5)
Hence z is even. Denotez = 2R whereR is an integer. Then (5) implies

V+T+1=FR (6)
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For any fixed valueV, evidently there exists a valu€ odd or even, which satisfies
(6), and therefore the valueg R, z are determined. Moreover, sinceis odd, g may
also be prime. The conditions fog being prime are not pursued here. The above
argument is illustrated in Table 1 at the end efttieorem.

This completes the proof of cgdag

The proof of casdb) is in its entirety the same proof as that of céap
Nevertheless, in order to make each case selfio@atawe shall present the complete
proof of casgb).

(b) Suppose thap = 4N + 3. Let p, henceN be fixed. For every fixed valua in (4),
there exists therefore a respective fixed intégeatisfying p*** = (4N + 3)*™* = 4J

+ 3, whereU is odd or even. LeB be an integer. Ifg = 4S+ 3, the left-hand side of
(4) is never a square. Henge= 4S+ 1. Then (4) implies

W+3)+(B+1) = 4U+St+1) =7 (7)
Thus, z is even. Denote = 2W whereW is an integer. Then (7) yields
U+S+1=W. (8)

For any fixed valudJ, evidently there exists a valu& odd or even so that (8) is
satisfied, and thus the valuag W, z are determined. Furthermore, singeis odd, q
may also be prime. This argument is presented lkeTaat the end of the theorem.

This completes the proof of cabg

In (3) and (4), all values> 1 were considered. We conclude our proof by shgw
that the assertion is also true whes 1.

From (2) whernx=1, we have
p+q =2 )
For each primep > 3, one can certainly obtain a valge such that (9) is satisfied. If
p, g are both of the form M + 1 or both of the form M + 3, then (9) is never equal
to a square. Thereforgg and g must be of two different forms. Two examples, fore
each form of p with g prime are given by
p=5 q=11, p+q=16 =7
and
p=7, q=29, p+q=236=~
This completes the proof of Theorem 2.1. O

As mentioned earlier, we now presdrg two tables for casda) and (b).

In Table 1the first three values pf= 4N + 1 are provided. Wher = 3
(n = 1), the respective values of odd/even, T odd/even,z and q prime are
demonstrated.

Table 1
p=4N+1 | n V T V+T+1=R? Z=4R* | z q=4T+3
5 1 31 4 36 144 12 | 19 prime
5 1 31 17 48 19¢€ 14 |71 prime
13 1 54¢ 26 57€ 230¢ 48 | 107 prime
13 1 54¢ | 17¢ 72¢ 291¢ 54 | 71¢ prime
17 1 | 122¢ | 67 129¢€ 518¢ 72 | 271 prime
17 1 | 122¢ | 140 136¢ 547¢ 74 | 563 prime
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In Table 2, the first three values pf= 4N + 3 are given. Whex = 3 fi= 1), the
respective values o) odd/even, S odd/even,z, and g prime are presented.

Table 2.

Pp=4N+3 | n U S | U+S+1=W* 7= 4W z q= 4S+1
7 1 85 58 144 576 24 | 233 prime
11 1 332 28 361 1444 38 | 113 prime
19 1| 1714 | 49 1764 7056 84 | 197 prime

3. On p*+¢ =7 and the Goldbach conjecture
The Goldbach (1690 — 1764) Conjecture is onehefdldest, most famous and very
difficult unsolved problem in Number Theory toddy.states the every even integer
greater than 2 can be expressed as the sum ofrimves
The relation betweep”* + ¢ =Z and the Goldbach Conjecture will now be shown
for a particular case of the equation.
Suppose thatA < B are positive integers of the same parity. Then,elach and
every even valug> 4 the equality
A+B =7
holds. If indeed the Goldbach Conjecture is truee, every even number greater than 2
is a sum of two primes, then under this assummigarticular case of equation (1) is
now derived from the above equality, namely
p'+q'= 7
The relation mentioned earlier has been shown.eBoh and every even value> 4,
this equation is satisfied with distinct primgsand g. The equation has infinitely many
solutions. This is an immediate consequence, sheédnfinite set of all even squares
> 16 is a subset of the infinite set of all evelegers.

4. Conclusion

It is also observed, that for a given even vaifiemore than one solution of equation (1)
exists when p<q are odd primes angl =y = 1. For each of the valueg = #, &, &,
10%, we demonstrate all the possible paixsf of equation (1) as follows:

3+13=5+11=% two pairs
5+31=7+29=13+23=17+19%6 four pairs
3+61=5+59=11+53=17+47=23+41°=8 five pairs
3+97=11+89=17+83=29+71=41+59=&8=106 Six pairs

In view of the above, we may ask:
Question 1. Let p<q be odd primes satisfyingp + q= Z. Foreach such value’,
what is the maximal number of pairs §) ?
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