Annals of
 Pure and Applied
 Mathematics

$m_{j}\left(P_{4}, G\right)$ for all Graphs G on 4 Vertices

C.J.Jayawardene, T.U.Hewage, B.L.Samarasekara
M.J.L.Mendis and L.C.Edussauriya
Department of Mathematics, University of Colombo
Colombo 3, Sri Lanka
Corresponding author. Email: c_jayawardene@yahoo.com

Received 10 July 2017; accepted 26 July 2017
Abstract. Let $j \geq 3$. Given that $m_{j}(H, G)$ denotes the smallest positive integer s such that $K_{j \times s} \rightarrow(H, G)$. In this paper, we exhaustively find $m_{j}\left(P_{4}, G\right)$ for all 11 non-isomorphic graphs G on 4 vertices, out of which 6 graphs G are connected and the others are disconnected.
Keywords: Ramsey theory, Multipartite Ramsey numbers

AMS Mathematics Subject Classification (2010): 05C55, 05D10

1. Introduction

In this paper, we consider simple graphs containing no loops or parallel edges. We define the complete balance multipartite graph $K_{j \times s}$ consisting of j partite sets (where the $m^{\text {th }}(1 \leq m \leq j)$ partite set V_{m} consisting of the vertex set $\left.\left\{v_{m, i} \mid 1 \leq i \leq s\right\}\right)$ as a graph, in which, there is an edge between every pair of vertices belonging to different partite sets. That is

$$
\begin{gathered}
V\left(K_{j \times s}\right)=\bigcup_{1 \leq \mathrm{m} \leq \mathrm{j}}\left\{v_{m, i} \mid 1 \leq i \leq s\right\} \text { and } \\
E\left(K_{j \times s}\right)=\bigcup\left\{\left(v_{m, i}, v_{m^{\prime}, i^{\prime}}\right) \mid 1 \leq i, i^{\prime} \leq s, 1 \leq m, m^{\prime} \leq j \text { and } m \neq m^{\prime}\right\}
\end{gathered}
$$

Let the graph P_{i} represent a path on i vertices and G be any graph on 4 vertices.
Given any two coloring (consisting of say red and blue colors) of the edges of a graph $K_{j \times s}$, we say that $K_{j \times s} \rightarrow\left(P_{4}, G\right)$, if there exists a red copy of P_{4} in $K_{j \times s}$ or a blue copy of G in $K_{j \times s}$. The size Ramsey multipartite number $m_{j}\left(P_{4}, G\right)$ is defined as the smallest natural number t such that $K_{j \times t} \rightarrow\left(P_{4}, G\right)$ (see [1,3,4,5,6,7] for general cases of $m_{j}(H, G)$). In this paper, we exhaustively find $m_{j}\left(P_{4}, G\right)$ for all 11 non-isomorphic graphs G on 4 vertices. The summary of our findings is illustrated in Table 1.

The next section deals with finding the entries of Table 1. Clearly the rows corresponding to row 1 , row 2 , row 4 , row 5 and row 7 follows from Syafrizal et al. (see [7]).
C.J.Jayawardene, T.U.Hewage, B.L.Samarasekara, M.J.L.Mendis and L.C.Edussauriya

$m_{\mathrm{j}}\left(P_{4}, G\right)$		3	4	5	6	7	8	9	Greater than or equal to 10
Row 1	$4 K_{1}$	2	1	1	1	1	1	1	1
Row 2	$\mathrm{P}_{2} \mathrm{U} 2 \mathrm{~K}_{I}$	2	1	1	1	1	1	1	1
Row 3	$2 K_{2}$	2	2	1	1	1	1	1	1
Row 4	$P_{3} \cup K_{l}$	2	1	1	1	1	1	1	1
Row 5	P_{4}	2	2	1	1	1	1	1	1
Row 6	$K_{l, 3}$	3	2	1	1	1	1	1	1
Row 7	$C_{3} \cup K_{1}$	3	2	2	1	1	1	1	1
Row 8	C_{4}	3	2	1	1	1	1	1	1
Row 9	$K_{l, 3}+x$	3	2	2	2	1	1	1	1
Row 10	B_{2}	4	2	2	1	1	1	1	1
Row 11	K_{4}	∞	4	2	2	2	2	2	1

Table 1: Values of $m_{\mathrm{j}}\left(P_{4}, G\right)$.

2. Size Ramsey numbers $\boldsymbol{m}_{\boldsymbol{j}}\left(\boldsymbol{P}_{4}, \boldsymbol{G}\right)$ when \boldsymbol{G} is connected graph on 4 vertices

Lemma 2.1. If $j \geq 3$, then

$$
m_{j}\left(P_{3}, C_{4}\right)= \begin{cases}2 & j=3 \\ 1 & j \geq 4\end{cases}
$$

Proof: Since $r\left(P_{3}, C_{4}\right)=4$ (see [2]), we obtain that $m_{3}\left(P_{3}, C_{4}\right) \geq 2$. Next consider any red/blue coloring given by $K_{3 \times 2}=H_{R} \oplus H_{B}$, such that H_{R} contains no red P_{3} and H_{B} contains no blue C_{4}. Then since there is no red P_{3}, we get $\delta\left(H_{B}\right) \geq 3$. But then by the degree condition $\delta\left(H_{B}\right) \geq 3 ; v_{1,1}, v_{1,2}$ will have two common neighbors in H_{B} say x and y. Thus $v_{1,1}$, $x, v_{1,2}, y, v_{1,1}$ will be a blue C_{4}. i.e., $m_{3}\left(P_{3}, C_{4}\right) \geq 2$. Therefore, $m_{3}\left(P_{3}, C_{4}\right)=2$.
For $j \geq 4$, since $r\left(P_{3}, C_{4}\right)=4$ (see [2]), we get $m_{j}\left(P_{3}, C_{4}\right)=1$.
Theorem 2.1. If $j \geq 3$, then

$$
m_{j}\left(P_{4}, C_{4}\right)= \begin{cases}3 & j=3 \\ 2 & j=4 \\ 1 & j \geq 5\end{cases}
$$

Proof: Since $r\left(P_{4}, C_{4}\right)=5$ (see [2]), we obtain that $m_{3}\left(P_{4}, C_{4}\right) \geq 3$.
To show, $m_{3}\left(P_{4}, C_{4}\right) \leq 3$, consider any red/blue coloring given by $K_{3 \times 3}=H_{R} \oplus H_{B}$, such that H_{R} contains no red P_{4} and H_{B} contains no blue C_{4}. But as $m_{3}\left(P_{3}, C_{3}\right)=2$ we get that there exists red P_{3} with end points x and y. Let z and w be two points not in this red P_{3} and not belonging to the partite sets x, y belong to. But then as H_{R} contains no red P_{4}, we will obtain that x, z, y, w, x is a blue C_{4}, a contradiction. Therefore $m_{3}\left(P_{4}, C_{4}\right)=3$, as required.

$$
m_{j}\left(P_{4}, G\right) \text { for all Graphs } G \text { on } 4 \text { Vertices }
$$

Next consider the coloring of $K_{4 \times 1}=H_{R} \oplus H_{B}$, generated by $H_{R}=C_{3}$. Then, $K_{4 \times 1}$ has no red P_{4} or a blue C_{4}. Therefore, we obtain that $m_{4}\left(P_{4}, C_{4}\right) \geq 2$. To show $m_{4}\left(P_{4}, C_{4}\right) \leq 2$, consider any red/blue coloring given by $K_{4 \times 2}=H_{R} \oplus H_{B}$, such that H_{R} contains no red P_{4} and H_{B} contains no blue C_{4}. But as $r\left(P_{3}, C_{4}\right)=4$ we get that there exists red P_{3}. Without loss of generality assume that this red path is given by $v_{1,1}, v_{2,1}, v_{3,1}$. But then as H_{R} contains no $\operatorname{red} P_{4}$, we will obtain that $v_{1,1}, v_{2,2}, v_{3,1}, v_{4,2}, v_{1,1}$ is a blue C_{4}, a contradiction. Therefore $m_{4}\left(P_{4}, C_{4}\right)=2$.

If $j \geq 5$, since $r\left(P_{4}, C_{4}\right)=5$ (see [2]), we get $m_{j}\left(P_{4}, C_{4}\right)=1$.
Theorem 2.2. If $j \geq 3$, then

$$
m_{j}\left(P_{4}, K_{1,3}\right)=\left\{\begin{array}{cc}
3 & j=3 \\
2 & j=4 \\
1 & j \geq 5
\end{array}\right.
$$

Proof: Let $j=3$. Consider the coloring of $K_{3 \times 2}=H_{R} \oplus H_{B}$, generated by $H_{R}=2 K_{3}$. Then, $K_{3 \times 2}$ has no red P_{4} or a blue $K_{1,3}$. Therefore, $m_{3}\left(P_{4}, K_{1,3}\right) \geq 3$.
To show $m_{3}\left(P_{4}, K_{1,3}\right) \leq 3$, consider any red/blue coloring given by $K_{3 \times 3}=H_{R} \oplus H_{B}$, such that H_{R} contains no red P_{4} and H_{B} contains no blue $K_{1,3}$. As H_{B} contains no blue $K_{1,3}$ both $v_{1,1}, v_{1,2}$ will satisfy $\operatorname{deg}_{\mathrm{R}}\left(v_{1,1}\right) \geq 4$ and $\operatorname{deg}_{\mathrm{R}}\left(v_{1,2}\right) \geq 4$. Therefore, this will force $v_{1,1}$ and $v_{1,2}$ to have common red neighbors say x and y. Then we get that $v_{1,1}, x, v_{1,2}, y$ is a red P_{4}, a contradiction.
That is, $m_{3}\left(P_{4}, K_{1,3}\right) \leq 3$. Therefore, $m_{3}\left(P_{4}, K_{1,3}\right)=3$.
Since $r\left(P_{4}, K_{1,3}\right)=5$ (see [2]), we obtain that, $m_{4}\left(P_{4}, K_{1,3}\right) \geq 2$.
To show $m_{4}\left(P_{4}, K_{1,3}\right) \leq 2$, consider any red/blue coloring given by $K_{3 \times 2}=H_{R} \oplus H_{B}$, such that H_{R} contains no red P_{4} and H_{B} contains no blue $K_{1,3}$. By [7], as we get that H_{R} contains a red P_{3}. This gives rise to two possibilities, namely $v_{1,1}$ is adjacent to $v_{2,1}, v_{2,2}$ in red or $v_{1,1}$ is adjacent to $v_{2,1}, v_{3,1}$. But then in both cases as $v_{2,1}$ cannot be a root of a blue $K_{1,3}$, we would get a red P_{4}.
Clearly, $m_{j}\left(P_{4}, K_{1,3}\right)=1$ when $j \geq 5$ as $r\left(P_{4}, K_{1,3}\right)=5$ (see [2]).

Theorem 2.3. If $j \geq 3$, then

$$
m_{j}\left(P_{4}, K_{1,3}+e\right)= \begin{cases}3 & \text { if } j=3 \\ 2 & \text { if } j \in\{4,5,6\} \\ 1 & \text { if } j \geq 7\end{cases}
$$

Proof: Consider the coloring of $K_{3 \times 2}=H_{R} \oplus H_{B}$, generated by $H_{R}=2 K_{3}$. Then, $K_{3 \times 2}$ has no red P_{4} or a blue $K_{1,3}+\mathrm{e}$. Therefore, $m_{3}\left(P_{4}, K_{1,3}+e\right) \geq 3$.

To show $m_{3}\left(P_{4}, K_{1,3}+e\right) \leq 3$, consider any red/blue coloring given by $K_{3 \times 3}=H_{R} \oplus H_{B}$, such that H_{R} contains no red P_{4} and H_{B} contains no blue $K_{1,3}+$ e. By [4] as, $m_{3}\left(P_{4}, C_{3}\right)=3$, we get that H_{B}, contains a C_{3} say without loss of generality induced by $\mathrm{v}_{1,1}, \mathrm{v}_{2,1}, \mathrm{v}_{3,1}$. But
C.J.Jayawardene, T.U.Hewage, B.L.Samarasekara, M.J.L.Mendis and L.C.Edussauriya then this gives rise to two possible scenarios, namely, one vertex of $\left\{\mathrm{v}_{1,1}, \mathrm{v}_{2,1}, \mathrm{v}_{3,1}\right\}$ is adjacent to a vertex of $\left\{\mathrm{v}_{1,2}, \mathrm{v}_{1,3}, \mathrm{v}_{2,2}, \mathrm{v}_{2,3}, \mathrm{v}_{3,2}, \mathrm{v}_{3,3}\right\}$ in blue and the other scenario where no vertices of $\left\{\mathrm{v}_{1,1}, \mathrm{v}_{2,1}, \mathrm{v}_{3,1}\right\}$ are adjacent to any vertices of $\left\{\mathrm{v}_{1,2}, \mathrm{v}_{1,3}, \mathrm{v}_{2,2}, \mathrm{v}_{2,3}, \mathrm{v}_{3,2}, \mathrm{v}_{3,3}\right\}$ in blue. The first scenario clearly gives a blue $K_{1,3}+e$. The second scenario forces a red P_{4}, consisting of $\mathrm{v}_{1,2}, \mathrm{v}_{2,1}, \mathrm{v}_{1,3}, \mathrm{v}_{3,1}$. Hence we get $m_{3}\left(P_{4}, K_{1,3}+e\right) \leq 3$, and thus can conclude that $m_{3}\left(P_{4}, K_{1,3}+e\right)=3$.
Since $r\left(P_{4}, K_{1,3}+e\right)=7$ (see [2]) we obtain that, $m_{6}\left(P_{4}, K_{1,3}+e\right) \geq 2$.
Next to show $m_{4}\left(P_{4}, K_{1,3}+e\right) \leq 2$, consider any coloring of $K_{4 \times 2}=H_{R} \oplus H_{B}$, such that H_{R} contains no red P_{4} and H_{B} contains no blue $K_{1,3}+e$. By [4], as $m_{4}\left(P_{4}, C_{3}\right)=2$, we get that H_{B} contains a C_{3}. Without loss of generality assume that this blue C_{3} induced by $\mathrm{v}_{1,1}$, $\mathrm{v}_{2,1}, \mathrm{v}_{3,1}$. But then as this C_{3} cannot be extended to a blue $K_{1,3}+e$, all edges given by $\left(\mathrm{v}_{1,1}\right.$, $\left.\mathrm{v}_{2,2}\right),\left(\mathrm{v}_{3,1}, \mathrm{v}_{2,2}\right)$ and $\left(\mathrm{v}_{1,1}, \mathrm{v}_{3,2}\right)$ will have to be red. This gives $\mathrm{v}_{3,2}, \mathrm{v}_{1,1}, \mathrm{v}_{2,2}, \mathrm{v}_{3,1}$ is a red P_{4}, a contradiction. Hence, $m_{4}\left(P_{4}, K_{1,3}+e\right) \leq 2$. That is, $m_{4}\left(P_{4}, K_{1,3}+e\right)=2$.
That is, we get that

$$
2 \leq m_{6}\left(P_{4}, K_{1,3}+e\right) \leq m_{5}\left(P_{4}, K_{1,3}+e\right) \leq m_{4}\left(P_{4}, K_{1,3}+e\right) \leq 2
$$

Therefore, we can conclude that $m_{j}\left(P_{4}, K_{1,3}+e\right)=2$ if $j=\{4,5,6\}$.
Clearly, $m_{j}\left(P_{4}, K_{1,3}+e\right)=1$ when $j \geq 7$, as $r\left(P_{4}, K_{1,3}+e\right)=7$ (see [2]).
Since all values of $m_{j}\left(P_{4}, B_{2}\right)$ are known (see [3]), we are left with finding $m_{j}\left(P_{4}, K_{4}\right)$. This case is considered in the following theorem.

Theorem 2.4. If $j \geq 3$, then

$$
m_{j}\left(P_{4}, K_{4}\right)= \begin{cases}\infty & \text { if } j=3 \\ 4 & \text { if } j=4 \\ 2 & \text { if } j \in\{5,6,7,8,9\} \\ 1 & \text { if } j \geq 10\end{cases}
$$

Proof: Let t be an arbitrary integer. Consider the coloring of $K_{3 \times \mathrm{t}}=H_{R} \oplus H_{B}$, generated by $H_{B}=K_{3 \times \mathrm{t}}$. Then, $K_{3 \times \mathrm{t}}$ has no red P_{4} or a blue K_{4}. Hence, $m_{3}\left(P_{4}, K_{4}\right)>t$, for any integer t. Therefore, we can conclude that $m_{3}\left(P_{4}, K_{4}\right)=\infty$. For $j=4$ case, consider the coloring of $K_{4 \times 3}=H_{R} \oplus H_{B}$, generated by H_{R} illustrated in the following graph. Then, $K_{4 \times 3}$ has no red P_{4} or a blue K_{4}. Therefore, $m_{4}\left(P_{4}, K_{4}\right) \geq 4$.

Next, we need to show that $m_{4}\left(P_{4}, K_{4}\right) \leq 4$. Consider any red/blue coloring given by $K_{4 \times 4}=H_{R} \oplus H_{B}$, such that H_{R} contains no red P_{4} and H_{B} contains no blue K_{4}. By [4] as, $m_{3}\left(P_{4}, C_{3}\right)=3$, we get that H_{B}, contains a C_{3} say without loss of generality induced by $S=\left\{\mathrm{v}_{2,1}, \mathrm{v}_{3,1}, \mathrm{v}_{4,1}\right\}$. Next as each of the four vertices $\mathrm{v}_{1,1}, \mathrm{v}_{1,2}, \mathrm{v}_{1,3}, \mathrm{v}_{1,4}$ does not induce a blue K_{4} with S , by pigeon hole principle without loss of generality we may assume that $\left(\mathrm{v}_{1,1}, \mathrm{v}_{2,1}\right)$ and $\left(\mathrm{v}_{1,2}, \mathrm{v}_{2,1}\right)$ are both red edges. Next applying $m_{3}\left(P_{4}, C_{3}\right)=3$, (see [4]) to

$$
m_{j}\left(P_{4}, G\right) \text { for all Graphs } G \text { on } 4 \text { Vertices }
$$

$\bigcup_{2 \leq \mathrm{m} \leq 4}\left\{v_{m, i} \mid 2 \leq i \leq 4\right\}$, we get that H_{B}, contains $a C_{3}$ say without loss of generality induced by say $S^{\prime}=\left\{\mathrm{v}_{2,2}, \mathrm{v}_{3,2}, \mathrm{v}_{4,2}\right\}$. But then as $S^{\prime} \mathrm{U}_{\left\{\mathrm{v}_{1,1}\right\}}$ doesn't induce a blue K_{4} we get that $\left(\mathrm{v}_{1,1}\right.$, x) is a red edge for some x in S^{\prime}. Thus, $\mathrm{v}_{1,2}, \mathrm{v}_{2,1,}, \mathrm{v}_{1,1}, x$ is a P_{4}, a contradiction. Thus, $m_{4}\left(P_{4}, K_{4}\right) \geq 4$. Therefore, $m_{4}\left(P_{4}, K_{4}\right)=4$.

Figure 1: The H_{R} red colored graph
Since $r\left(P_{4}, K_{4}\right)=10$ (see [2]), we see that $m_{9}\left(P_{4}, K_{4}\right) \geq 2$.
Next we will show that $m_{5}\left(P_{4}, K_{4}\right) \leq 2$. Consider any red/blue coloring given by $K_{5 \times 2}=$ $H_{R} \oplus H_{B}$, such that H_{R} contains no red P_{4} and H_{B} contains no blue K_{4}. By [4] as, $m_{4}\left(P_{4}, C_{3}\right)=2$, we get that H_{B}, contains a_{3} say without loss of generality induced by $S=\left\{\mathrm{v}_{3,1}, \mathrm{v}_{4,1}, \mathrm{v}_{5,1}\right\}$. Next as each of the four vertices of $S^{\prime}=\left\{\mathrm{v}_{1,1}, \mathrm{v}_{1,2}, \mathrm{v}_{2,3}, \mathrm{v}_{2,2}\right\}$ does not induce a blue K_{4} with S, by pigeon hole principle without loss of generality we may assume that one of the following three cases occur.
Case 1: At least three vertices of S^{\prime} are adjacent in red to $v_{3,1}$.
This case is illustrated in the following diagram.

Figure 2: Illustrates Case 1
In this case $\mathrm{v}_{1,1}, \mathrm{v}_{2,1}, \mathrm{v}_{4,1}, \mathrm{v}_{5,1}$ must not induce a blue K_{4}, all possible options will give us a red P_{4}, a contradiction.

Case 2: Exactly two vertices of S^{\prime} are adjacent in red to $\mathrm{v}_{3,1}$.
In this case we get one of the following two scenarios as illustrated in the following diagram.

C.J.Jayawardene, T.U.Hewage, B.L.Samarasekara, M.J.L.Mendis and L.C.Edussauriya

In the first scenario since $\mathrm{v}_{1,1}, \mathrm{v}_{2,2}, \mathrm{v}_{3,2}, \mathrm{v}_{5,1}$ must not induce a blue K_{4}, the edge $\left(\mathrm{v}_{3,2}, \mathrm{v}_{5,1}\right)$ will be forced to be a red, as in all other options will give us a red P_{4}.

Figure 3: Illustrates Case 2: The first scenario
However, in this scenario when $\left(\mathrm{v}_{3,2}, \mathrm{v}_{5,1}\right)$ is red as $\mathrm{v}_{1,2}, \mathrm{v}_{2,1}, \mathrm{v}_{3,2}, \mathrm{v}_{4,2}$ must not induce a blue K_{4}, as before the edge ($\mathrm{v}_{3,2}, \mathrm{v}_{4,2}$) will be forced to be a red, as in all other options will give us a red P_{4}. But now since $\mathrm{v}_{1,1}, \mathrm{v}_{2,2}, \mathrm{v}_{4,2}, \mathrm{v}_{5,2}$ must not induce a blue K_{4}, all possible options will give us a red P_{4}, a contradiction.

Figure 4: Illustrates Case 2: The second scenario
In the second scenario since $\mathrm{v}_{1,1}, \mathrm{v}_{2,2}, \mathrm{v}_{4,1}, \mathrm{v}_{5,2}$ must not induce a blue K_{4}, the edge $\left(\mathrm{v}_{2,2}, \mathrm{v}_{5,2}\right)$ or else the edge $\left(\mathrm{v}_{4,1}, \mathrm{v}_{5,2}\right)$ will be forced to be a red, as in all other options will give us a red P_{4}.

In the scenario when $\left(\mathrm{v}_{2,2}, \mathrm{v}_{5,2}\right)$ is red as $\mathrm{v}_{1,2}, \mathrm{v}_{2,1}, \mathrm{v}_{4,2}, \mathrm{v}_{5,2}$ must not induce a blue K_{4}, it directly results that $\left(\mathrm{v}_{1,2}, \mathrm{v}_{4,2}\right)$ is red as in all other options will give us a red P_{4}. But now since $\mathrm{v}_{2,1}, \mathrm{v}_{3,2}, \mathrm{v}_{4,2}, \mathrm{v}_{5,2}$ must not induce a blue K_{4}, all possible options will give us a red P_{4}, a contradiction. Next, in the scenario when $\left(\mathrm{v}_{4,1}, \mathrm{v}_{5,2}\right)$ is red as $\mathrm{v}_{1,1}, \mathrm{v}_{2,2}, \mathrm{v}_{4,2}, \mathrm{v}_{5,2}$ must not induce a blue K_{4}, it directly results that $\left(\mathrm{v}_{2,2}, \mathrm{v}_{4,2}\right)$ is red as in all other options will give us a red P_{4}. But, now since $\mathrm{v}_{1,2}, \mathrm{v}_{2,1}, \mathrm{v}_{3,2}, \mathrm{v}_{4,2}$ must not induce a blue K_{4}, all possible options will give us a red P_{4}, a contradiction.

Case 3: Exactly two vertices of S^{\prime} belonging to one partite set are adjacent in red to $v_{3,1}$. In the first scenario since $\mathrm{v}_{1,1}, \mathrm{v}_{2,1}, \mathrm{v}_{3,2}, \mathrm{v}_{5,1}$ must not induce a blue K_{4}, the edge ($\mathrm{v}_{3,2}, \mathrm{v}_{5,1}$) will be forced to be a red, as in all other options will give us a red P_{4}.

Figure 5: Illustrates Case 3: The first scenario
However, in this scenario when $\left(\mathrm{v}_{3,2}, \mathrm{v}_{5,1}\right)$ is red, as $\mathrm{v}_{1,1}, \mathrm{v}_{2,1}, \mathrm{v}_{3,2}, \mathrm{v}_{4,2}$ must not induce a blue K_{4}, as before the edge $\left(\mathrm{v}_{3,2}, \mathrm{v}_{4,2}\right)$ will be forced to be a red, as in all other options will give us a red P_{4}. But now since $\mathrm{v}_{1,1}, \mathrm{v}_{2,1}, \mathrm{v}_{4,2}, \mathrm{v}_{5,2}$ must not induce a blue K_{4}, all possible options will give us a red P_{4}, a contradiction.

In the second scenario since $\mathrm{v}_{1,1}, \mathrm{v}_{2,1}, \mathrm{v}_{3,2}, \mathrm{v}_{5,1}$ must not induce a blue K_{4}, the edge $\left(\mathrm{v}_{3,2}\right.$, $\mathrm{v}_{5,1}$) or the edge ($\mathrm{v}_{1,1}, \mathrm{v}_{3,2}$) will be forced to be a red, as in all other options will give us a $\operatorname{red} P_{4}$.

Figure 6: Illustrates Case 3: The second scenario
In this scenario when $\left(\mathrm{v}_{3,2}, \mathrm{v}_{5,1}\right)$ is red, as $\mathrm{v}_{1,1}, \mathrm{v}_{2,1}, \mathrm{v}_{3,2}, \mathrm{v}_{4,2}$ must not induce a blue K_{4}, as before the edge ($\mathrm{v}_{1,1}, \mathrm{v}_{4,2}$) will be forced to be a red, as in all other options will give us a red P_{4}. But now since $\mathrm{v}_{2,2}, \mathrm{v}_{3,2}, \mathrm{v}_{4,2}, \mathrm{v}_{5,2}$ must not induce a blue K_{4}, all possible options will give us a red P_{4}, a contradiction.

Next in this scenario when $\left(\mathrm{v}_{1,1}, \mathrm{v}_{3,2}\right)$ is red, as $\mathrm{v}_{1,2}, \mathrm{v}_{2,1}, \mathrm{v}_{3,2}, \mathrm{v}_{5,2}$ must not induce a blue K_{4}, as before the edge ($\mathrm{v}_{1,2}, \mathrm{v}_{5,2}$) will be forced to be a red, as in all other options will give us a red P_{4}. But now since $\mathrm{v}_{2,1}, \mathrm{v}_{3,2}, \mathrm{v}_{4,2}, \mathrm{v}_{5,2}$ must not induce a blue K_{4}, all possible options will give us a red P_{4}, a contradiction.
That is, we get that

$$
2 \geq m_{5}\left(P_{4}, K_{4}\right) \geq m_{6}\left(P_{4}, K_{4}\right) \geq m_{7}\left(P_{4}, K_{4}\right) \geq m_{8}\left(P_{4}, K_{4}\right) \geq m_{9}\left(P_{4}, K_{4}\right) \geq 2
$$

Therefore, we can conclude that $m_{j}\left(P_{4}, K_{4}\right)=2$ if $j=\{5, \ldots, 9\}$.
Finally, $m_{j}\left(P_{4}, K_{4}\right)=1$ when $j \geq 10$, as $r\left(P_{4}, K_{4}\right)=10$ (see [2]).

3. Size Ramsey numbers $\boldsymbol{m}_{\boldsymbol{j}}\left(P_{4}, G\right)$ when G is disconnected graph on 4 vertices

We have already dealt with all cases excluding $G=2 K_{2}$. We will deal with this in the following theorem.
C.J.Jayawardene, T.U.Hewage, B.L.Samarasekara, M.J.L.Mendis and L.C.Edussauriya

Theorem 3.1. If $j \geq 3$, then

$$
m_{j}\left(P_{4}, 2 K_{2}\right)= \begin{cases}2 & \text { if } j \in\{3,4\} \\ 1 & \text { if } j \geq 5\end{cases}
$$

Proof: Since, $r\left(P_{4}, 2 K_{2}\right)=5$ (see [2]), we obtain that $m_{j}\left(P_{4}, 2 K_{2}\right) \geq 2$.
To show $m_{3}\left(P_{4}, 2 K_{2}\right) \leq 2$, consider any red/blue coloring given by $K_{3 \times 2}=H_{R} \oplus H_{B}$, such that H_{R} contains no red P_{4} and H_{B} contains no blue $2 K_{2}$.
Since $m_{3}\left(P_{4}, P_{4}\right)=2$ (see [7]), we get that H_{B} has a P_{4} and thus a $2 K_{2}$. That is, $m_{3}\left(P_{4}, 2 K_{2}\right) \leq 2$. Therefore, $m_{3}\left(P_{4}, 2 K_{2}\right)=2$.
Clearly, $m_{j}\left(P_{4}, 2 K_{2}\right)=1$ when $j \geq 5$, as $r\left(P_{4}, 2 K_{2}\right)=5$ (see [2]).

REFERENCES

1. A.P.Burger and J.H.van Vuuren, Ramsey numbers in complete balanced multipartite graphs. Part II: size numbers, Discrete Mathematics, 283 (2004) 45-49.
2. V.Chavatal and F.Harary, Generalized Ramsey theory for graphs, III. small offdiagonal numbers, Pacific Journal of Mathematics, 41(2) (1972) 335-345.
3. C.J.Jayawardene and B.L.Samarasekara, Multipartite Ramsey numbers for K_{4}-e versus all graphs up to 4 vertices, Annals of Pure and Applied Mathematics, 13(1) (2017) 9-26.
4. C.J.Jayawardene and B.L.Samarasekara, Multipartite Ramsey numbers for C_{3} versus all graphs on 4 vertices, The Journal of National Science Foundation, 41(1) (2017) 67-72.
5. C.J.Jayawardene and T.U.Hewage, Multipartite Ramsey numbers for C_{4} versus all graphs on 4 vertices, Annals of Pure and Applied Mathematics, 13(2) (2017)297-304.
6. V.Kavitha and R.Govindarajan, A study on Ramsey numbers and its bounds, Annals of Pure and Applied Mathematics, 8(2) (2014) 227-236.
7. S.Sy, E.T.Baskoro and S.Uttunggadewa, The size multipartite Ramsey number for paths, Journal of Combinatorial Mathematics and Combinatorial Computing, 55 (2005) 103-107.
