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Abstract. Letj > 3. Given thatm(H,G) denotes the smallest positive integesuch that
Kixs—(H,G). In this paper, we exhaustively fimt(P,,G) for all 11 non-isomorphic
graphsG on 4 vertices, out of which 6 graphs G are coretteind the others are dis-
connected.
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1. Introduction
In this paper, we consider simple graphs containitg loops or parallel edges.
We define the complete balance multipartite grephiconsisting ofj partite sets (where

them” (1< m< j)partite seV,, consisting of the vertex sdiv,,; | 1<i<g)as agraph,

in which, there is an edge between every pair ofices belonging to different partite
sets That is
V(Ke) = {Vy|1<i<stand

1<m<j

E(K,.o) S J{(Vp Vo) [1ii’s s, Ismm's jandm# m '},

Let the graphP; represent a path drvertices ands be any graph on 4 vertices.
Given any two coloring (consisting of say red ahgelcolors) of the edges of a graph
Kixs» We say thaKjxs— (P4,G), if there exists a red copy Bfin Kjxsor a blue copy oGin
Kixs. The size Ramsey multipartite numba(P,,G) is defined as the smallest natural
numbert such that;.— (P.G) (see [1,3,4,5,6,7] for general casesty{H,G)). In this
paper, we exhaustively fint(P,,G) for all 11 non-isomorphic grapl@on 4 vertices.
The summary of our findings is illustrated in Table

The next section deals with finding the entrieSable 1. Clearly the rows cor-
responding to row 1, row 2, row 4, row 5 and rovolfows from Syafrizal et al. (see

[7D).
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=] 3 4 5 6 7 8 9 Greatel
than or
m(P4G) equal
Grap to 10
Row 1 4K, 2 1 1 1 1 1 1 1
Row 2 P,U2K, 2 1 1 1 1 1 1 1
Row ¢ 2K, 2 2 1 1 1 1 1 1
Row < PsUK; 2 1 1 1 1 1 1 1
Row £ P4 2 2 1 1 1 1 1 1
Row € K1z 3 2 1 1 1 1 1 1
Row 7 CsUK; 3 2 2 1 1 1 1 1
Row € C, 3 2 1 1 1 1 1 1
Row ¢ Kis+ X 3 2 2 2 1 1 1 1
Row 1( | B, 4 2 2 1 1 1 1 1
Row 11 | K, I 4 2 2 2 2 2 1

Table 1: Values ofmy(P4,G).

2. SizeRamsey numbers M, (P, ,G)when G is connected graph on 4 vertices
Lemma2.1. If j > 3, then
2 j=3

ey <[ I

Proof: Sincer(Ps, C;) = 4 (see [2]),we obtain thams(P5;,C,) > 2. Next consider any
red/blue coloring given bifsx, = Hg @Hg, such thaHg contains no redP; andHg con-
tains no blueC,. Then since there is no r&d, we geto(Hg) > 3. But then by the degree
conditiond(Hg) > 3; vy 1,v1, Will have two common neighbors kg sayx andy. Thusv ,

X, V12, Y, Vi1 Will be a blueC,. i.e.,mg(Ps,Cs) > 2. Thereforepms(Ps,Cs) = 2.

Forj > 4, sincer(P;, Cy) = 4 (see [2]), we gety(P;, Cs) = 1.

Theorem 2.1. Ifj > 3, then

3  j=3
m(R.C) =1 2 =4
1 j=25

Proof: Sincer(P,,Cs) = 5 (see [2]), we obtain thatk(P,,Cs) > 3.

To show,ms(P4,C,) < 3, consider any red/blue coloring given Ky; = Hg @Hg, such
that Hg contains no red, andHg contains no blu€,. But asms(P5,Cs) = 2 we get that
there exists re@;with end pointsc andy. Let zandw be two points not in this reé and
not belonging to the partite se¢sy belong to. But then adgcontains no re®,, we will
obtain thak, z, y, w, x is a blueC,, a contradiction. Thereforas(P4,C,) = 3, as required.
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Next consider the coloring ¢f,«;= Hr @Hs, generated bidr= C;. Then,K,xhas no red
P,or a blueC,. Therefore, we obtain that(P,,C,) > 2. To showmy(P4,C4) < 2, consider
any red/blue coloring given ., = Hr @Hg, such thaHg contains no redP, andHg
contains no blu€,. But asr(Ps,Cs) = 4 we get that there exists rBg Without loss of
generality assume that this red path is giverviy,,v3;. But then adHg contains no
redP,;, we will obtain thatvyi,Vo2,V31,Va2,V11 iS @ blueC,y, a contradiction. Therefore
m4(P4,C4) =2.

Ifj > 5, sincer(P4,Cs) = 5 (see [2]), we gety(P,,Cs) = 1.

Theorem 2.2. If j =3, then

3  j=3
m(P.K)=1 2 j=4
1 j=5

Proof: Let j =3.Consider the coloring df;.,= Hr @Hg, generated bidr = 2K;. Then,
Ksxzhas no redP,or a blueKy,s. Therefore,m,(P,, K, ;) = 3.

To showm,(P,, Kl's) < 3,consider any red/blue coloring given Ky.-= Hgz @Hg, such
thatHg contains no re®, andHg contains no blu&,;. As Hg contains no blu&,; both
Vi1, V1o Will satisfy deg(vy;) > 4 and deg(vi,) > 4. Therefore, this will force,; andv; ,
to have common red neighbors sagndy. Then we get that; 4, X, Vi, Y is a redP,, a
contradiction.

Thatism,(P,, K, ;) < 3. Thereforem,(P,, K, ;) = 3.

Sincer(P,,K, ;) = 5(see [2]), we obtain tham, (P,, K, ;) > 2.
To showm,(P,, Kl's) < 2,consider any red/blue coloring given Ky.,= Hg @Hg, such

thatHgcontains no re®,andHg contains no blu&,,;. By [7], as we get thdiy contains
a redPs. This gives rise to two possibilities, namely; is adjacent tos, 4, Vo, in red or
v11iS adjacent ta, 1, V35. But then in both cases &g cannot be a root of a bldg,;, we
would get a redP,.

Clearly, m;(P,,K, ;) =1when j 25 asr(P,,K, ;) = 5(see [2]).

Theorem 2.3.If j = 3, then

3 ifj=3
m (P, K, ,+e)={ 2 if j{4,5,6}
1 ifj27

Proof: Consider the coloring dfs;.= Hr @Hsg, generated bidr= 2Ks. Then,Ks«xhas no
redP,or a blueK,s+e. Thereforem,(P,, K, ;+€) > 3.

To show m,(P,, K, ;+€) < 3,consider any red/blue coloring given By.s= Hr ®Hs,

such thaHgcontains no reé,andHg contains no blu&,,s+e. By [4] asm,(P,,C,) = 3,
we get thatHg, contains &; say without loss of generality induced byy,v, 1,vs1. But
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then this gives rise to two possible scenarios,elgnone vertex of {v1,v»1,vz 1} is adja-
cent to a vertex of {M, Vi3, Vo2,V23,V32,V3 4 in blue and the other scenario where no
vertices of {\ 1,V 1,V3 1} are adjacent to any vertices of {4, Vi3, Vo2,V23,V32,V33} iN

blue. The first scenario clearly gives a blkg, +e. The second scenario forces a Rad
consisting of y,,V1,V13,V31. Hence we getmn,(P,, K1'3+e)s 3,and thus can conclude
that m,(P,, K, ,+€) =3.

Sincer (P, K, ;+€) = 7(see [2]) we obtain thatyy(P,, K, ,+€) > 2.

Next to showm,(P,, K, ;+€) < 2,consider any coloring df.x,= Hr @Hs, such thatg

contains no red, andHg contains no blueK, ;+e. By [4], asm,(P,,C;) = 2,we get
that Hg contains &Cs;. Without loss of generality assume that this igénduced by vy,
V21, V31. But then as thi€;cannot be extended to a blig ; + €, all edges given by (v,

Va.2), (Va1, Vo2) and (M1, Va2) Will have to be red. This gives ¥vi1,V22,V31iS @ redP,, a
contradiction. Hencem, (P,, K, ;+€) < 2.That is,m,(P,,K, ;+€) = 2.
That is, we get that

2<my(P,,K, ;+e)smy(P,K +e)sm(P,K s;e)< 2

Therefore, we can conclude that(P,, K, ;+€) =2if j={4,5,6}.

Clearly, m; (P,,K ;+€) =1whenj > 7,asr (B,,K ;+€) = 7(see [2]).

Since all values of m; (P,, B,) are known (see [3]), we are left with finding m, (F,, K,).
This caseis considered in the following theorem.

Theorem 2.4.If j = 3, then

o if j=3
(B K,) = 4 if j=4

A if j0{5,6,7,8,9}
1 if j =10

Proof: Let thbe an arbitrary integer. Consider the coloring{ef= Hr @Hg, generated by
Hg= K3« ThenKshas no redP,or a blueK,. Hence,m,(P,,K,) > t, for any integert.
Therefore, we can conclude thax (P,, K,) = c.
For j =4case, consider the coloring K== Hr @Hg, generated bk illustrated in the
following graph. ThenK,.shas no redP,or a blueK,. Thereforem,(P,,K,) = 4.

Next, we need to show that,(P,,K,) < 4.Consider any red/blue coloring given
by Ksxs= Hr @Hp, such thatHycontains no red, andHg contains no blu&,. By [4] as,
m,(P,,C,) = 3,we get thatHg, contains &; say without loss of generality induced by

S={v,1,Vs1, Vai}- Next as each of the four verticegivvi o,Vi 3 V14 does not induce a
blueK, with S, by pigeon hole principle without loss @&mngrality we may assume that

(Vi1 V2,1) and (Mo Voq)are both red edges. Next applyimy(P,,C,) = 3,(see [4]) to
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U { Vil 2=<i<4}, we get thaHg, contains &;say without loss of generality induced
2<sm<4
by sayS={v,.,, Vs2,V42}. But then asSU{v, ;} doesn’t induce a bluk, we get that (v,
X) is a red edge for somein S. Thus, \, V21V11, X iS @ Py, a contradiction. Thus,

m,(P,,K,) = 4. Therefore,m,(P,,K,) = 4.

i - -

.--'H-f‘--ﬂ--
. — —

Figure 1: TheHg red colored graph

Sincer (R,,K,) =10(see [2]), we see thay (P, K,) > 2.
Next we will show thatm,(P,,K,) < 2.Consider any red/blue coloring given Ky.,=

Hr @Hz, such thatHi contains no red?, and Hg contains no blueK,. By [4] as,
m,(P,,C,) = 2,we get thaHg, contains &; say without loss of generality induced by

S={vs1, Va1,Vs1}. Next as each of the four vertices 8F{vi1, Vi,V23V22 does not
induce a blueK,; with S by pigeon hole principle without loss of gendgalive may
assume that one of the following three cases occur.

Case 1: At least three vertices & are adjacent in red tg ¥
This case is illustrated in the following diagram.

U1l

Figure2: lllustrates Case 1

In this case\, Vo1, Va1, V51 Must not induce a blug, all possible options will give
us a red?,, a contradiction.

Case 2: Exactly two vertices oBare adjacent in red tg v
In this case we get one of the following two sc@waa@s illustrated in the following
diagram.
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In the first scenario since ¥V, Vs 2 Vs 1 Mmust not induce a blu€,, the edge (3 ,vs,1)
will be forced to be a red, as in all other optiank give us a redP..

Figure 3: lllustrates Case 2: The first scenario

However, in this scenario whensyvs 1) is red as V», V2 1,V 2, V4 Mmust not induce a blue
K4, as before the edges(v, ) will be forced to be a red, as in all other opsiavill give
us a red?,;. But now since vy,V2 2, Vs 2,Vs 2 must not induce a blug,, all possible options
will give us a red?,, a contradiction.

1

Figure4: Illustrates Case 2: The second scenario

In the second scenario singg,w »V41,Vs, Must not induce a bluk,, the edge
(V2.2,Vs) Or else the edge {v,Vs,) will be forced to be a red, as in all other opsiawill
give us a redp,.

In the scenario when,pvs ,) is red as VM, V»1,V42,Vs > Must not induce a blug,,
it directly results that (w,v, ) is red as in all other options will give us a RydBut now
since \ 1,V 2,V 2, V5 » Must not induce a blug,, all possible options will give us a réy,

a contradiction. Next, in the scenario whep:(Vs ) is red as vi,Vz 2,V 2,Vs 2 must not
induce a blu&,, it directly results that ¢»,vs ) is red as in all other options will give us
a redP,. But, now since ¥V, 1,V32,V4» Must not induce a blué,, all possible options
will give us a red?,, a contradiction.

Case 3: Exactly two vertices o8 belonging to one partite set are adjacent inoed £

In the first scenario since ¥V, 1,V 2, Vs 1 must not induce a blu€,, the edge (3 ,vs,1)
will be forced to be a red, as in all other optiank give us a redP..
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Figureb5: lllustrates Case 3: The first scenario

However, in this scenario when {ws 1) is red, as ¥1,V21,V3 2,V Must not induce
a blueK,, as before the edges;(;v,,) will be forced to be a red, as in all other op$io
will give us a redP,. But now since M, V»1,V42,Vs, must not induce a bluk,, all
possible options will give us a r&d, a contradiction.

In the second scenario sinGge,w 1,Vs 5, Vs 1 Must not induce a blue,, the edge (3%
,Vs.1) Or the edge (w,vz,) will be forced to be a red, as in all other opiavill give us a
redP,.

1

Figure®6: Illustrates Case 3: The second scenario

In this scenario whens(/vs ;) is red, as vi,V» 1,Vs 2,V4» Mmust not induce a blue,,
as before the edge;(¥,v4 ) will be forced to be a red, as in all other optiavill give us
a redP,. But now since ¥, Vs32,V42,Vs 2 Must not induce a blu€,, all possible options
will give us a red?,, a contradiction.

Next in this scenario when, (Ws ) is red, as ¥,V 1,Va Vs, Must not induce a
blueK,, as before the edge;(y vs ;) will be forced to be a red, as in all other opsawill
give us a redP,. But now since M,V3 V4 2Vs, Must not induce a blu€,, all possible
options will give us a reB,, a contradiction.

That is, we get that

22m(P,,K,)2m,(P,, K )zm,P,K )z2m P, K )z2m{P ,K )= 2
Therefore, we can conclude that(P,,K,) =2 if j ={5,...,9}.
Finally, m, (F,,K,) =1when j 210,asr(F,,K,) = 10(see [2]).
3. Size Ramsey numbersm, (P, .G)when G isdisconnected graph on 4 vertices

We have already dealt with all cases excluddg 2K,. We will deal with this in the
following theorem.

159



C.J.Jayawardene, T.U.Hewage, B.L.Samarasekard,.Mehdis and L.C.Edussauriya

Theorem 3.1. If j =3, then

2 if j0{3,4}
(P,,2K,) = .
M (R, 2K2) {1 if j=5

Proof: Sincer (P,, 2K, ) = 5(see [2]), we obtain than, (P,, 2K, )= 2.

To showm,(P,, 2K, )< 2, consider any red/blue coloring givenky, = Hg @Hpg, such

thatHgcontains no re&,andHgcontains no bluék..
Since my(P4,Py) = 2 (see [7]), we get thatly has aPjand thus a R, That is,

m,(P,, 2K, ) < 2.Therefore,m,(P,, 2K ,) = 2.
Clearly, m;(P,,2K,) =1when j 2 5,asr(P,, 2K,) = 5(see [2]).
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