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Abstract.  Let j ≥ 3. Given that mj(H,G) denotes the smallest positive integer s such that 
Kj×s→(H,G). In this paper, we exhaustively find mj(P4,G) for all 11 non-isomorphic 
graphs G on 4 vertices, out of which 6 graphs G are connected and the others are dis-
connected.    
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1. Introduction 
In this paper, we consider simple graphs containing no loops or parallel edges.                                        
We define the complete balance multipartite graph Kj×s consisting of j partite sets (where 
the mth (1 )m j≤ ≤ partite set Vm consisting of the vertex set  ,{ | 1 }m iv i s≤ ≤ ) as a graph, 

in which, there is an edge between every pair of vertices belonging to different partite 
sets. That is  

,
1 m j

( ) = { | 1 }j s m iV K v i s×
≤ ≤

≤ ≤∪ and 

, ', ' and( ) = {( , ) | 1 , ' , 1 , ' '}j s m i m iE K v v i i s m m j m m× ≤ ≤ ≤ ≤ ≠∪ . 

Let the graph Pi represent a path on i vertices and G be any graph on 4 vertices. 
Given any two coloring (consisting of say red and blue colors) of the edges of a graph 
Kj×s, we say that Kj×s→ (P4,G), if there exists a red copy of P4in Kj×s or a blue copy of Gin 
Kj×s. The size Ramsey multipartite number mj(P4,G) is defined as the smallest natural 
number t such that Kj×t→ (P4,G) (see [1,3,4,5,6,7] for general cases of mj(H,G)). In this 
paper, we exhaustively find mj(P4,G) for all 11 non-isomorphic graphs G on 4 vertices.    
The summary of our findings is illustrated in Table 1. 

The next section deals with finding the entries of Table 1. Clearly the rows cor-
responding to row 1, row 2, row 4, row 5 and row 7 follows from Syafrizal et al. (see 
[7]). 
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mj(P4,G) 

j= 
 
 
Graph G 

3 4 5 6 7 8 9 Greater 
than or 
equal 
to 10 

Row 1 4K1 2 1 1 1 1 1 1 1 
Row 2 P2U2K1 2 1 1 1 1 1 1 1 

Row 3 2K2 2 2 1 1 1 1 1 1 
Row 4 P3UK1 2 1 1 1 1 1 1 1 

Row 5 P4 2 2 1 1 1 1 1 1 
Row 6 K1,3 3 2 1 1 1 1 1 1 

Row 7 C3UK1 3 2 2 1 1 1 1 1 
Row 8 C4 3 2 1 1 1 1 1 1 

Row 9 K1,3 + x 3 2 2 2 1 1 1 1 

Row 10 B2 4 2 2 1 1 1 1 1 
Row 11 K4 ∞ 4 2 2 2 2 2 1 

 
Table 1: Values of mj(P4,G). 

 
2.  Size Ramsey numbers 4jm (P ,G)when G is connected graph on 4 vertices 

Lemma 2.1. If j ≥ 3, then 

3 4

2 3
( , )  

1 4j

j
m P C

j

=
=  ≥

 

Proof: Since r(P3, C4) = 4 (see [2]),we obtain that m3(P3,C4) ≥ 2. Next consider any 
red/blue coloring given by K3×2 = HR ⊕HB, such that HR contains no red P3 and HB con-
tains no blue C4. Then since there is no red P3, we get δ(HB) ≥ 3. But then by the degree 
condition δ(HB) ≥ 3; v1,1,v1,2 will have two common neighbors in HB say x and y. Thus v1,1, 
x, v1,2, y, v1,1 will be a blue C4.  i.e., m3(P3,C4) ≥ 2. Therefore, m3(P3,C4) = 2. 
For j ≥ 4, since r(P3, C4) = 4 (see [2]), we get mj(P3, C4) = 1. 
 
Theorem 2.1. If j ≥ 3, then 

 

Proof: Since r(P4 ,C4) = 5 (see [2]), we obtain that m3(P4,C4) ≥ 3. 
To show, m3(P4,C4) ≤ 3, consider any red/blue coloring given by K3×3 = HR ⊕HB, such 
that HR contains no red P4 and HB contains no blue C4. But as m3(P3,C3) = 2 we get that 
there exists red P3 with end points x and y. Let z and w be two points not in this red P3 and 
not belonging to the partite sets x, y belong to. But then as HR contains no red P4, we will 
obtain that x, z, y, w, x is a blue C4, a contradiction. Therefore m3(P4,C4) = 3, as required. 

4 4

3 3

( , ) 2 4

1 5
j

j

m P C j

j

=
= =
 ≥
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Next consider the coloring of K4×1 = HR ⊕HB, generated by HR = C3. Then, K4×1 has no red 
P4 or a blue C4. Therefore, we obtain that m4(P4,C4) ≥ 2. To show m4(P4,C4) ≤ 2, consider 
any red/blue coloring given by K4×2 = HR ⊕HB, such that HR contains no red P4 and HB 

contains no blue C4. But as r(P3,C4) = 4 we get that there exists red P3. Without loss of 
generality assume that this red path is given by v1,1,v2,1,v3,1. But then as HR contains no 
redP4, we will obtain that v1,1,v2,2,v3,1,v4,2,v1,1 is a blue C4, a contradiction. Therefore 
m4(P4,C4) = 2. 
           If j ≥ 5, since r(P4,C4) = 5 (see [2]), we get mj(P4,C4) = 1.  
 
Theorem 2.2. If 3≥j , then  

 4 1,3

3 3

( , ) 2 4

1 5
j

j

m P K j

j

=
= =
 ≥

 

Proof: Let 3.j = Consider the coloring of K3×2= HR ⊕HB, generated by HR = 2K3. Then, 

K3×2 has no red P4 or a blue K1,3. Therefore, 3 4 1,3( , ) 3.m P K ≥  

 To show 3 4 1,3( , ) 3,m P K ≤ consider any red/blue coloring given by K3×3= HR ⊕HB, such 

that HR contains no red P4 and HB contains no blue K1,3. As HB contains no blue K1,3 both 
v1,1, v1,2 will satisfy degR(v1,1) ≥ 4 and degR(v1,2) ≥ 4. Therefore, this will force v1,1 and v1,2 
to have common red neighbors say x and y. Then we get that v1,1, x, v1,2, y is a red P4, a 
contradiction.  
That is, 3 4 1,3( , ) 3.m P K ≤  Therefore, 3 4 1,3( , ) 3.m P K =  

Since 4 1,3( , ) = 5r P K (see [2]), we obtain that,4 4 1,3( , ) 2.m P K ≥  

To show 4 4 1,3( , ) 2,m P K ≤ consider any red/blue coloring given by K3×2 = HR ⊕HB, such 

that HR contains no red P4 and HB contains no blue K1,3. By [7], as we get that HR contains 
a red P3. This gives rise to two possibilities, namely v1,1 is adjacent to v2,1, v2,2 in red or 
v1,1is adjacent to v2,1, v3,1. But then in both cases as v2,1 cannot be a root of a blue K1,3, we 
would get a red P4. 

Clearly, 4 1,3( , ) =1jm P K when 5j ≥  as 4 1,3( , ) = 5r P K (see [2]). 

 
Theorem 2.3. If 3≥j , then  

 4 1,3

3 if = 3

( , ) = 2 if {4,5,6}

1 if 7
j

j

m P K e j

j


+ ∈
 ≥

 

Proof: Consider the coloring of K3×2= HR ⊕HB, generated by HR = 2K3. Then, K3×2 has no 
red P4 or a blue K1,3+e. Therefore, 3 4 1,3( , ) 3.m P K e+ ≥  

To show 3 4 1,3( , ) 3,m P K e+ ≤ consider any red/blue coloring given by K3×3= HR ⊕HB, 

such that HR contains no red P4 and HB contains no blue K1,3+e. By [4] as, 3 4 3( , ) 3,m P C =
we get that HB, contains aC3 say without loss of generality induced by v1,1,v2,1,v3,1. But 
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then this gives rise to two possible scenarios, namely, one vertex of {v1,1,v2,1 ,v3,1} is adja-
cent to a vertex of  {v1,2 , v1,3 , v2,2 ,v2,3 ,v3,2 ,v3,3} in  blue and the other scenario where no 
vertices of {v1,1,v2,1 ,v3,1} are adjacent to any vertices of  {v1,2 , v1,3 , v2,2 ,v2,3 ,v3,2 ,v3,3} in 
blue. The first scenario clearly gives a blue 1,3 .K e+  The second scenario forces a red P4, 

consisting of v1,2,v2,1,v1,3,v3,1. Hence we get 3 4 1,3( , ) 3,m P K e+ ≤ and thus can conclude 

that 3 4 1,3( , ) 3.m P K e+ =  

Since 4 1,3( , ) = 7r P K e+ (see [2]) we obtain that, 6 4 1,3( , ) 2.m P K e+ ≥  

Next to show 4 4 1,3( , ) 2,m P K e+ ≤ consider any coloring of K4×2 = HR ⊕HB, such that HR 

contains no red P4 and HB contains no blue 1,3K e+ . By [4], as 4 4 3( , ) 2,m P C = we get 

that HB contains a C3. Without loss of generality assume that this blue C3 induced by v1,1, 
v2,1, v3,1. But then as this C3cannot be extended to a blue 1,3 ,K e+ all edges given by  (v1,1, 

v2,2), (v3,1, v2,2) and (v1,1, v3,2) will have to be red. This gives v3,2,v1,1,v2,2 ,v3,1 is a red P4, a 
contradiction. Hence, 4 4 1,3( , ) 2.m P K e+ ≤ That is, 4 4 1,3( , ) 2.m P K e+ =  

That is, we get that  

6 4 1,3 5 4 1,3 4 4 1,32 ( , ) ( , ) ( , ) 2.m P K e m P K e m P K e≤ + ≤ + ≤ + ≤  

Therefore, we can conclude that 4 1,3( , ) =jm P K e+ 2 if {4,5,6}.j =  

Clearly, 4 1,3( , ) =1jm P K e+ when 7,j ≥ as 4 1,3( , ) = 7r P K e+ (see [2]). 

Since all values of 4 2( , )jm P B  are known (see [3]), we are left with finding 4 4( , ).jm P K  

This case is considered in the following theorem.  
 
Theorem 2.4. If 3≥j , then  

 
4 4

if 3

4 if 4
( , ) =

2 if {5,6,7,8,9}

1 if 10

j

j

j
m P K

j

j

∞ =
 =
 ∈
 ≥

 

Proof: Let t be an arbitrary integer. Consider the coloring of K3×t= HR ⊕HB, generated by 
HB= K3×t. Then, K3×t has no red P4 or a blue K4. Hence, 3 4 4( , ) ,m P K t>  for any integer .t

Therefore, we can conclude that 3 4 4( , ) .m P K = ∞  

For 4j = case, consider the coloring of K4×3= HR ⊕HB, generated by HR illustrated in the 

following graph. Then, K4×3 has no red P4 or a blue K4. Therefore, 4 4 4( , ) 4.m P K ≥  
         Next, we need to show that 4 4 4( , ) 4.m P K ≤ Consider any red/blue coloring given 
by K4×4= HR ⊕HB, such that HR contains no red P4 and HB contains no blue K4. By [4] as,

3 4 3( , ) 3,m P C = we get that HB, contains aC3 say without loss of generality induced by 

S={v 2,1,v3,1, v4,1}. Next as each of the four vertices v1,1, v1,2,v1,3, v1,4 does not induce a 
blue K4 with S, by pigeon hole principle without loss of generality we may assume that  
(v1,1, v2,1) and (v1,2, v2,1)are both red edges. Next applying 3 4 3( , ) 3,m P C = (see [4]) to 
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,
2 m 4

{ | 2 4},m iv i
≤ ≤

≤ ≤∪ we get that HB, contains aC3 say without loss of generality induced 

by say S’={v 2,2 , v3,2 ,v4,2}. But then as S’U{v 1,1} doesn’t induce a blue K4 we get that (v1,1, 
x) is a red edge for some x in S’. Thus, v1,2, v2,1,v1,1, x is a P4, a contradiction. Thus, 

4 4 4( , ) 4.m P K ≥  Therefore, 4 4 4( , ) 4.m P K =  
 

 

Figure 1: The HR red colored graph 
 
Since 4 4( , ) = 10r P K (see [2]), we see that9 4 4( , ) 2.m P K ≥  

Next we will show that 5 4 4( , ) 2.m P K ≤ Consider any red/blue coloring given by K5×2= 

HR ⊕HB, such that HR contains no red P4 and HB contains no blue K4. By [4] as,

4 4 3( , ) 2,m P C = we get that HB, contains aC3 say without loss of generality induced by 

S={v 3,1, v4,1,v5,1}. Next as each of the four vertices of S’={v 1,1, v1,2,v2,3,v2,2}  does not 
induce a blue K4 with S, by pigeon hole principle without loss of generality we may 
assume that one of the following three cases occur.  

Case 1: At least three vertices of S’ are adjacent in red to v3,1. 
This case is illustrated in the following diagram. 

 
Figure 2: Illustrates Case 1 

        In this case v1,1, v2,1, v4,1, v5,1 must not induce a blue K4, all possible options will give 
us a red P4, a contradiction. 

Case 2: Exactly two vertices of S’are adjacent in red to v3,1. 
In this case we get one of the following two scenarios as illustrated in the following 
diagram. 
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In the first scenario since v1,1,v2,2,v3,2,v5,1 must not induce a blue K4, the edge (v3,2 ,v5,1) 
will be forced to be a red, as in all other options will give us a red P4.  
 

 
Figure 3: Illustrates Case 2: The first scenario 

 
However, in this scenario when (v3,2 ,v5,1) is red as v1,2, v2,1,v3,2,v4,2 must not induce a blue 
K4, as before the edge (v3,2 ,v4,2) will be forced to be a red, as in all other options will give 
us a red P4. But now since v1,1,v2,2,v4,2,v5,2 must not induce a blue K4, all possible options 
will give us a red P4, a contradiction. 
 

 
Figure 4: Illustrates Case 2: The second scenario 

          In the second scenario since v1,1,v2,2,v4,1,v5,2 must not induce a blue K4, the edge 
(v2,2 ,v5,2) or else the edge (v4,1 ,v5,2) will be forced to be a red, as in all other options will 
give us a red P4.  
          In the scenario when (v2,2 ,v5,2) is red as v1,2, v2,1,v4,2,v5,2 must not induce a blue K4, 
it directly results that (v1,2 ,v4,2) is red as in all other options will give us a red P4. But now 
since v2,1,v3,2,v4,2,v5,2 must not induce a blue K4, all possible options will give us a red P4, 
a contradiction. Next, in the scenario when (v4,1 ,v5,2) is red as v1,1,v2,2,v4,2,v5,2 must not 
induce a blue K4, it directly results that (v2,2 ,v4,2) is red as in all other options will give us 
a red P4. But, now since v1,2,v2,1,v3,2,v4,2 must not induce a blue K4, all possible options 
will give us a red P4, a contradiction.  
 
Case 3: Exactly two vertices of S’ belonging to one partite set are adjacent in red to v3,1. 
In the first scenario since v1,1,v2,1,v3,2,v5,1 must not induce a blue K4, the edge (v3,2 ,v5,1) 
will be forced to be a red, as in all other options will give us a red P4.  
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Figure 5: Illustrates Case 3: The first scenario 

 
        However, in this scenario when (v3,2 ,v5,1) is red, as v1,1,v2,1,v3,2,v4,2  must not induce 
a blue K4, as before the edge (v3,2 ,v4,2) will be forced to be a red, as in all other options 
will give us a red P4. But now since v1,1, v2,1,v4,2,v5,2 must not induce a blue K4, all 
possible options will give us a red P4, a contradiction.  
       In the second scenario since v1,1,v2,1,v3,2,v5,1 must not induce a blue K4, the edge (v3,2 

,v5,1) or the edge (v1,1 ,v3,2) will be forced to be a red, as in all other options will give us a 
red P4.  

 
Figure 6: Illustrates Case 3: The second scenario 

          In this scenario when (v3,2 ,v5,1) is red, as v1,1,v2,1,v3,2,v4,2  must not induce a blue K4, 
as before the edge (v1,1 ,v4,2) will be forced to be a red, as in all other options will give us 
a red P4. But now since v2,2, v3,2,v4,2,v5,2 must not induce a blue K4, all possible options 
will give us a red P4, a contradiction.  
         Next in this scenario when (v1,1,v3,2) is red, as v1,2,v2,1,v3,2,v5,2  must not induce a 
blue K4, as before the edge (v1,2, v5,2) will be forced to be a red, as in all other options will 
give us a red P4. But now since v2,1,v3,2,v4,2,v5,2 must not induce a blue K4, all possible 
options will give us a red P4, a contradiction.  
That is, we get that  

5 4 4 6 4 4 7 4 4 8 4 4 9 4 42 ( , ) ( , ) ( , ) ( , ) ( , ) 2.m P K m P K m P K m P K m P K≥ ≥ ≥ ≥ ≥ ≥  

Therefore, we can conclude that 4 4( , ) =jm P K 2  if {5,...,9}.j =  

Finally, 4 4( , ) =1jm P K when 10,j ≥ as 4 4( , ) = 10r P K (see [2]). 

3.  Size Ramsey numbers 4jm (P ,G)when G is disconnected graph on 4 vertices 

We have already dealt with all cases excluding 22 .G K=  We will deal with this in the 
following theorem. 
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Theorem 3.1. If 3≥j , then  

 4 2

2 if {3,4}
( ,2 ) =

1 if 5j

j
m P K

j

∈
 ≥

 

Proof: Since, 4 2( , 2 ) = 5r P K (see [2]), we obtain that 4 2( ,2 ) 2.jm P K ≥  

To show 3 4 2( , 2 ) 2,m P K ≤  consider any red/blue coloring given byK3×2 = HR ⊕HB, such 

that HR contains no red P4and HB contains no blue 2K2. 
Since m3(P4,P4) = 2 (see [7]), we get that HB has a P4and thus a 2K2. That is, 

3 4 2( ,2 ) 2.m P K ≤ Therefore, 3 4 2( , 2 ) 2.m P K =  

Clearly, 4 2( ,2 ) =1jm P K when 5,j ≥ as 4 2( , 2 ) = 5r P K (see [2]). 
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