Multiplicative Operations of Intuitionistic Fuzzy Matrices

D.Venkatesan\(^1\) and S.Sriram\(^2\)

\(^1\)Department of Mathematics
Annamalai University, Annamalainagar -608002, India
Email: venkat2733327@gmail.com

\(^2\)Mathematics Wing, Directorate of Distance Education
Annamalai University, Annamalainagar -608002, India
Corresponding author. Email: ssm_3096@yahoo.co.in

Received 28 June 2017; accepted 26 July 2017

Abstract. In this paper, we investigate the algebraic properties of intuitionistic fuzzy matrices under the new operations \(X_1\) and \(X_2\). The properties of intuitionistic fuzzy matrices are also obtained in the case where these new operations are combined with the well known operations of intuitionistic fuzzy matrices.

Keywords: Intuitionistic fuzzy set, intuitionistic fuzzy matrix

AMS Mathematics Subject Classification (2010): 94D05, 15B15, 15B99

1. Introduction

Atanassov [2] introduced the concept of intuitionistic fuzzy set (IFS) which is the generalization of fuzzy set introduced by Zadeh [22]. Since its appearance, intuitionistic fuzzy set has been investigated by many researchers and applied to many fields, such as decision making, clustering analysis etc.,

IFM is very useful in the discussion of intuitionistic fuzzy relation(IFR) \([5, 2]\). Lee and Jeong [11] obtained a canonical form of the transitive IFM. Sriram and Murugadas [16] proved the set of all IFMs form a semiring with respect to max-min composition of IFMs. Zhong et al. [21] constructed the intuitionistic fuzzy similarity matrix and then utilize it to derive a method for clustering analysis.

Simultaneously, Pal et al. [8] defined the IFM and Pal [15] introduced the intuitionistic fuzzy Determinant, studied some properties on it. Khan and Pal [9] studied some operations on IFMs. Shyamal and Pal [18] studied the distances between intuitionistic fuzzy matrices and their algebraic properties. Adak et al. [1] defined the concept of intuitionistic fuzzy block matrices and different types of intuitionistic fuzzy...
block matrices. Also, the operations direct sum, Kronecker sum, Kronecker product of intuitionistic fuzzy matrices are presented.

Boobalan and Sriram [4,17] studied the algebraic sum and algebraic product of two intuitionistic fuzzy matrices and their algebraic properties. Also they proved the set of all intuitionistic fuzzy matrices forms a commutative monoid with respect to these operations. Muthuraji et al. [13] introduced a new composition operator and studied the algebraic properties also obtained a decomposition of an IFM. Muthuraji and Sriram [14] defined two operators namely Lukasiewicz disjunction and conjunction and investigated its algebraic properties also results which connects the above set operators with the other existing operators.

Emam and Fndh [6] defined some kinds of IFMs, the max-min and min-max composition of IFMs. Also they derived several important results by these compositions and construct an idempotent intuitionistic fuzzy matrix from any given one through the min-max composition.

Recently, Pal [24,25] defines new kind of fuzzy matrices. In these matrices rows and columns are also uncertain.

In [3] Atanassov, five new intuitionistic fuzzy operations on intuitionistic fuzzy sets containing multiplication were introduced and their properties are studied.

In this paper, we extend two of these operations to IFMs and investigate their algebraic properties.

2. Preliminaries

In this section, we give to some basic definitions of intuitionistic fuzzy matrix that are necessary for this paper.

Definition 2.1. ([7]) An intuitionistic fuzzy matrix (IFM) is a matrix of pairs
\[A = \left((a_{ij}, a'_{ij}) \right) \]
of a non negative real numbers satisfying
\[0 \leq a_{ij} + a'_{ij} \leq 1 \]
for all i, j.

Definition 2.2. ([15]) For any two IFMs A and B of same size, we have
(i) The max-min composition of A and B is defined by
\[A \vee B = \left((\max(a_{ij}, b_{ij}), \min(a'_{ij}, b'_{ij})) \right) \]
(ii) The min-max composition of A and B is defined by
\[A \wedge B = \left((\min(a_{ij}, b_{ij}), \max(a'_{ij}, b'_{ij})) \right) \]

Definition 2.3. ([15]) For any two IFMs A and B of same size, \(A \geq B \) iff \(a_{ij} \geq b_{ij} \) and
\(a'_{ij} \leq b'_{ij} \) for all i, j.

Definition 2.4. ([4]) The \(m \times n \) zero IFM \(O \) is an IFM all of whose entries are \((0,1) \).
The \(m \times n \) universal IFM \(J \) is an IFM all of whose entries are \((1,0) \).

Definition 2.5. ([15]) The complement of an IFM A which is denoted by \(A^C \) and is defined by
\[A^C = \left((a'_{ij}, a_{ij}) \right) \]

Lemma 2.6. ([21]) Let \(a, b \) and c be real numbers. The following equalities hold:
Multiplicative Operations of Intuitionistic Fuzzy Matrices

(i) \(\text{max} (a, \text{min}(a, b)) = a, \text{min}(a, \text{max}(a, b)) = a \).

(ii) \(\text{max}(a, \text{max}(b, c)) = \text{max}(\text{max}(a, b), c), \text{min}(a, \text{min}(b, c)) = \text{min}(\text{min}(a, b), c) \).

Lemma 2.6. ([21]) Let \(a, b \in [0, 1] \), we have

(i) \(\text{max} (a, \text{min}(b, c)) = \text{min}(\text{max}(a, b), \text{max}(a, c)), \text{min}(a, \text{max}(b, c)) = \text{max}(\text{min}(a, b), \text{min}(a, c)) \).

(ii) \(\text{max}(a, b) \text{max}(a, c) \leq \text{max}(a, b) \text{max}(a, c), \text{min}(a, b) \text{min}(a, c) \geq \text{min}(a, b) \).

3. Main results

In this section, we define operations \(X_1 \) and \(X_2 \) of IFMs and investigate their algebraic properties.

Definition 3.1. For any two IFMs \(A \) and \(B \) of same size, then we define

(i) \(X_1B = ((\text{max}(a_{ij}, b_{ij}), a_{ij} b_{ij}')) \).

(ii) \(X_2B = ((a_{ij} b_{ij}, \text{max}(a_{ij}, b_{ij}')) \).

\(a_{ij} b_{ij} \) and \(a_{ij} b_{ij}' \) are the ordinary multiplications.

Property 3.2. If \(A \) and \(B \) are any two IFMs of same size, we have \(AX_2B \leq AX_1B \).

Proof: Let \(A = ((a_{ij}, a'_{ij})) \) and \(B = ((b_{ij}, b'_{ij})) \) be two IFMs of same size.

Since \(a_{ij} b_{ij} \leq \text{min}(a_{ij}, b_{ij}) \leq \text{max}(a_{ij}, b_{ij}) \) and \(\text{max}(a_{ij}, b_{ij}) \geq a_{ij} b_{ij}' \), for all \(i, j \).

Hence, \(AX_2B \leq AX_1B \).

Property 3.3. For any IFM \(A \), we have

(i) \(AX_1A \neq A \).

(ii) \(AX_2A \neq A \).

Proof: Let \(A = ((a_{ij}, a'_{ij})) \) be an IFM. Then

(i) \(AX_1A = ((a_{ij}, a'_{ij})') \neq ((a_{ij}, a'_{ij})) \).

Hence, \(AX_1A \neq A \).

(ii) \(AX_2A = ((a'_{ij}, a'_{ij})') \neq ((a_{ij}, a'_{ij})) \).

Hence, \(AX_2A \neq A \).

The following properties are obvious. The operations \(X_1 \) and \(X_2 \) are commutative as well as associative.

Property 3.4. Let \(A, B \) and \(C \) be any three IFMs of same size, we have

(i) \(AX_1B = BX_1A \).

(ii) \((AX_1B)X_1C = AX_1(BX_1C) \).

(iii) \(AX_2B = BX_2A \).

(iv) \((AX_2B)X_2C = AX_2(BX_2C) \).

Property 3.5. For any three IFMs \(A, B \) and \(C \) of same size, we have

(i) Nullity: \(AX_1f = f, AX_2O = O \).

(ii) Identity: \(AX_1O = A, AX_2f = A \).
(iii) Distributivity: $AX_1(BX_2C) \neq (AX_1BX_2)(AX_1C)$ and $AX_2(BX_1C) \neq (AX_2BX_1)(AX_2C)$.

(iv) Absorption: $AX_1(AX_2B) \neq A$ and $AX_2(AX_1B) \neq A$.

Proof: (i) and (ii) are clear by the definition of X_1 and X_2.

(iii) $AX_1(BX_2C) = ((\max (a_{ij}, b_{ij}), a_{ij} \max (b_{ij}, c_{ij})))$

$AX_2(BX_1C) = ((\max (a_{ij}, b_{ij}) \max (a_{ij}, c_{ij}), \max (a_{ij}b_{ij}, a_{ij}c_{ij})))$

$= ((\max (a_{ij}, b_{ij}) \max (a_{ij}, c_{ij}), a_{ij} \max (b_{ij}, c_{ij})))$

Since $\max (a_{ij}, b_{ij}) \max (a_{ij}, c_{ij}) \leq \max (a_{ij}, b_{ij}c_{ij})$, for all i, j.

Hence, $AX_1(BX_2C) \neq (AX_1BX_2)(AX_1C)$.

Similarly we can prove the other one.

(iv) $AX_1(AX_2B) = ((\max (a_{ij}, a_{ij}b_{ij}), a_{ij} \max (a_{ij}, b_{ij})))$

$= ((a_{ij}, a_{ij} \max (a_{ij}, b_{ij})))$

$\neq ((a_{ij}, a_{ij})).$

Hence, $AX_1(AX_2B) \neq A$.

Similarly we can prove the other one.

4. Results on complement of IFM

The operator complement obey the De Morgan's laws for the operations X_1 and X_2.

This is established in the following properties.

Property 4.1. For the IFMs A and B of same size, we have

(i) $(AX_1B)_c = A^cX_1B^c$.

(ii) $(AX_2B)_c = A^cX_2B^c$.

(iii) $(AX_1B)_c \leq A^cX_1B^c$.

(iv) $(AX_2B)_c \leq A^cX_2B^c$.

Proof: (i) $(AX_1B)_c = ((a_{ij}'b_{ij}', \max (a_{ij}, b_{ij})))$

$= A^cX_1B^c$.

Hence, $(AX_1B)_c = A^cX_1B^c$.

(ii) $(AX_2B)_c = ((\max (a_{ij}, b_{ij}'), a_{ij}b_{ij}))$

$= A^cX_2B^c$.

Hence, $(AX_2B)_c = A^cX_2B^c$.

(iii) Since $a_{ij}'b_{ij}' \leq \max (a_{ij}', b_{ij}')$, $\max (a_{ij}, b_{ij}) \geq a_{ij}b_{ij}$ and from the Definition (2.3) $(AX_1B)_c \leq A^cX_1B^c$.

The proof (iv) is similar to that of (iii).

Property 4.2. For any IFM A, we have

(i) $AX_1A^c \neq 0$.

(ii) $AX_2A^c \neq 1$.

Proof: (i) $AX_1A^c = ((\max (a_{ij}, a_{ij}'), a_{ij}'a_{ij}))$

$\neq (0, 1)$.

Hence, $AX_1A^c \neq 0$.

(ii) $AX_2A^c = ((a_{ij}a_{ij}', \max (a_{ij}, a_{ij}')))$.

176
Multiplicative Operations of Intuitionistic Fuzzy Matrices

Hence, \(AX_2 A^C \neq I \).

Property 4.3. For any IFM \(A \), we have

(i) \((AX_1 A^C)^C = AX_2 A^C \).

(ii) \((AX_2 A^C)^C = AX_1 A^C \).

Proof: \(AX_1 A^C = \{(\max(a_{ij}, a'_{ij}), a'_{ij}a_{ij})\} \) and \(AX_2 A^C = \{(a_{ij}a'_{ij}, \max(a_{ij}, a'_{ij}))\} \).

(i) \((AX_1 A^C)^C = (\{(a_{ij}a_{ij}, \max(a_{ij}, a'_{ij}))\}) \)

\[= \{(a_{ij}a_{ij}, \max(a_{ij}, a'_{ij}))\} \]

\[= AX_2 A^C. \]

Hence, \((AX_1 A^C)^C = AX_2 A^C \).

(ii) \((AX_2 A^C)^C = (\{(a_{ij}a_{ij}, a'_{ij}a_{ij})\}) \)

\[= (\max(a_{ij}, a'_{ij}), a'_{ij}a_{ij}) \]

\[= AX_1 A^C. \]

Hence, \((AX_2 A^C)^C = AX_1 A^C \).

Property 4.4. For any two IFMs \(A \) and \(B \) of same size, we have

(i) \((AX_1 A^C)X_i(AX_1 A^C) \neq AX_1 A^C \).

(ii) \((AX_2 A^C)X_2(AX_2 A^C) \neq AX_2 A^C \).

Proof: \((i) (AX_1 A^C)X_i(AX_1 A^C) = (\{(\max(a_{ij}, a'_{ij}), \max(a_{ij}, a'_{ij})), (a_{ij}, a'_{ij})^2\}) \)

\[AX_1 A^C = (\{(\max(a_{ij}, a'_{ij}), a'_{ij}a_{ij})\}) \]

Since \((a_{ij}, a'_{ij})^2 \leq a'_{ij}a_{ij} \), for all \(i, j \).

Hence, \((AX_1 A^C)X_i(AX_1 A^C) \neq AX_1 A^C \).

The proof \((ii) \) is similar to that of \((i) \).

5. Results on \(X_1 \) and \(X_2 \) combined with max-min and min-max compositions of IFMs

We shall discuss the absorption property in the case where the operations \(X_i, X_2 \), max-min and min-max compositions are combined each other.

Property 5.1. Let \(A \) and \(B \) are any two IFMs of same size, we have

(i) \(AX_i(A \lor B) \neq A \).

(ii) \(AX_i(A \land B) \neq A \).

Proof: \((i) AX_i(A \lor B) = (\{(\max(a_{ij}, a'_{ij}), a'_{ij} \min (a_{ij}, a'_{ij}))\}) \)

\[= (\{(a_{ij}, a'_{ij} \min (a_{ij}, a'_{ij}))\}) \]

\[\neq (\{(a_{ij}, a'_{ij})\}). \]

Hence, \(AX_i(A \lor B) \neq A \).

The proof \((ii) \) is similar to that of \((i) \).

Property 5.2. Let \(A \) and \(B \) are any two IFMs of same size, we have

(i) \(AX_2(A \lor B) \neq A \).

(ii) \(AX_2(A \land B) \neq A \).

Proof: \((i) AX_2(A \lor B) = (\{(a_{ij} \max(a_{ij}, b_{ij}), \max(a'_{ij}, b'_{ij})))\}) \)

\[= (\{(a_{ij} \max(a_{ij}, b_{ij}), \max(a'_{ij}, b'_{ij})))\}) \]

\[\neq (\{(a_{ij}, a'_{ij})\}). \]

Hence, \(AX_2(A \lor B) \neq A \).

The proof \((ii) \) is similar to that of \((i) \).
D.Venkatesan and S.Sriram

\[(a_{ij} \max (a_{ij}, b_{ij}), a_{ij}') \]

Hence, \(AX_2(A \lor B) \neq A \).

The proof (ii) is similar to that of (i).

Property 5.3. Let \(A \) and \(B \) are any two IFMs of same size, we have

(i) \(A \lor (AX_1B) \neq AX_1B \).

(ii) \(A \land (AX_1B) = A \).

Proof: (i) \(A \lor (AX_1B) = (\max (a_{ij}, \max (a_{ij}, b_{ij})), \min (a_{ij}', a_{ij}'b_{ij}')) \)
\[= (\max (a_{ij}, \max (a_{ij}, b_{ij})), a_{ij}'b_{ij}') \neq AX_1B. \]

Hence, \(A \lor (AX_1B) \neq AX_1B \).

(ii) \(A \land (AX_1B) = (\min (a_{ij}, \max (a_{ij}, b_{ij})), \max (a_{ij}', a_{ij}'b_{ij}')) \)
\[= (a_{ij}', a_{ij}'). \]

Hence, \(A \land (AX_1B) = A \).

Similarly, we can prove the following property

Property 5.4. Let \(A \) and \(B \) are any two IFMs of same size, we have

(i) \(A \land (AX_2B) \neq AX_2B \).

(ii) \(A \lor (AX_2B) = A \).

Next, we shall discuss the distributivity in the case where the operations \(X_1, X_2 \), \(\max \)-\(\min \) and \(\min \)-\(\max \) compositions are combined each other.

Property 5.5. Let \(A, B \) and \(C \) are any three IFMs of same size, we have

(i) \(AX_1(B \lor C) = (AX_1B) \lor (AX_1C) \).

(ii) \(AX_1(B \land C) = (AX_1B) \land (AX_1C) \).

Proof: (i) \(AX_1(B \lor C) = (\max (a_{ij}, \max (b_{ij}, c_{ij})), a_{ij} \min (b_{ij}, c_{ij}')) \)
\[= (\max (a_{ij}, \max (b_{ij}, c_{ij})), \max (a_{ij}', a_{ij}'c_{ij}')) \]
\[= (AX_1B) \lor (AX_1C). \]

Hence, \(AX_1(B \lor C) = (AX_1B) \lor (AX_1C) \).

The proof (ii) is similar to that of (i).

Property 5.6. Let \(A, B \) and \(C \) are any three IFMs of same size, we have

(i) \(AX_2(B \lor C) = (AX_2B) \lor (AX_2C) \).

(ii) \(AX_2(B \land C) = (AX_2B) \land (AX_2C) \).

Proof: (i) \(AX_2(B \lor C) = (a_{ij}(\max (b_{ij}, c_{ij})), \max (a_{ij}' \min (b_{ij}, c_{ij}')) \)
\[= (\max (a_{ij}b_{ij}, a_{ij}c_{ij})), \min (a_{ij}', b_{ij}'), \max (a_{ij}' b_{ij}') \]
\[= (AX_2B) \lor (AX_2C). \]

Hence, \(AX_2(B \lor C) = (AX_2B) \lor (AX_2C) \).

The proof (ii) is similar to that of (i).

Property 5.7. Let \(A, B \) and \(C \) are any three IFMs of same size, we have
Multiplicative Operations of Intuitionistic Fuzzy Matrices

(i) $A \lor (B \times C) \neq (A \lor B) \times (A \lor C)$.
(ii) $A \land (B \times C) \neq (A \land B) \times (A \land C)$.

Proof:

(i) $A \lor (B \times C) = ((\max (a_{ij}, \max (b_{ij}, c_{ij})), \min (a'_{ij}, b'_{ij}c'_{ij})))$

 $= ((\max (\max (a_{ij}, b_{ij}), \max (a_{ij}, c_{ij})), \min (a'_{ij}, b'_{ij}c'_{ij})))$

 $\neq (A \lor B) \times (A \lor C)$.

Hence, $A \lor (B \times C) \neq (A \lor B) \times (A \lor C)$. (By using Lemma 2.7)

The proof (ii) is similar to that of (i).

Property 5.8. Let A, B and C are any three IFMs of same size, we have

(i) $A \lor (B \times C) \neq (A \lor B) \times (A \lor C)$.
(ii) $A \land (B \times C) \neq (A \land B) \times (A \land C)$.

Proof:

(i) $A \lor (B \times C) = ((\max (a_{ij}, \max (b_{ij}, c_{ij})), \min (a'_{ij}, b'_{ij}c'_{ij})))$

 $= ((\max (\max (a_{ij}, b_{ij}), \max (a_{ij}, c_{ij})), \min (a'_{ij}, b'_{ij}c'_{ij})))$

 $\neq (A \lor B) \times (A \lor C)$.

Hence, $A \lor (B \times C) \neq (A \lor B) \times (A \lor C)$. (By using Lemma 2.7)

The proof (ii) is similar to that of (i).

Property 5.9. If A and B are any two IFMs of same size, we have

(i) $AX_iB \geq A \land B$.
(ii) $AX_iB \geq A \lor B$.
(iii) $AX_iB \neq A \lor B$.

Proof:

(i) $AX_iB = ((\max (a_{ij}, b_{ij}), a'_{ij}b'_{ij}))$ and

$A \land B = ((\min (a_{ij}, b_{ij}), \max (a_{ij}, b_{ij})))$.

Since $\max (a_{ij}, b_{ij}) \geq \min (a_{ij}, b_{ij})$ and $a'_{ij}b'_{ij} \leq \max (a'_{ij}, b'_{ij})$.

Hence, $AX_iB \geq A \land B$.

(ii) $AX_iB = ((a_{ij}b_{ij}, \max (a'_{ij}, b'_{ij})))$ and

$A \lor B = ((\max (a_{ij}, b_{ij}), \min (a_{ij}, b_{ij})))$.

Since $a_{ij}b_{ij} \leq \max (a_{ij}, b_{ij})$ and $a'_{ij}b'_{ij} \geq \min (a'_{ij}, b'_{ij})$.

Hence, $AX_iB \geq A \lor B$.

(iii) Since $a_{ij}b_{ij} \leq \min (a_{ij}, b_{ij})$ and $a'_{ij}b'_{ij} \geq \min (a'_{ij}, b'_{ij})$.

Hence, $AX_iB \geq A \land B$.

(iv) Since $a'_{ij}b'_{ij} \leq \min (a'_{ij}, b'_{ij})$, for all i, j.

Hence, $AX_iB \neq A \lor B$.

Property 5.10. If A and B are any two IFMs of same size, we have

(i) $(A \lor B) \land (AX_iB) = AX_iB$.
(ii) $(A \land B) \lor (AX_iB) = AX_iB$.

Proof:

(i) $(A \lor B) \land (AX_iB)$

 $= ((\max (a_{ij}, b_{ij}), \max (a_{ij}, b_{ij})), \min (a_{ij}, b_{ij}), a'_{ij}b'_{ij}))$
D.Venkatesan and S.Sriram

\[(\max (a_{ij}, b_{ij}), a'_{ij}b'_{ij}) \]

\[= (\max (a_{ij}, b_{ij}), a'_{ij}b'_{ij}) \]

\[= A \cdot B. \]

Hence, \((A \lor B) \lor (A \cdot B) = A \cdot B. \)

The proof \((i)\) is similar to that of \((i)\).

Property 5.11. If \(A \) and \(B \) are any two IFMs of same size, we have

\((i)\) \((A \land B)X_1(A \lor B) = AX_1B.\)

\((ii)\) \((A \land B)X_2(A \lor B) = AX_2B.\)

Proof: \((i)\)(\(A \land B\))\(X_1(A \lor B)\)

\[= (\max (\min (a_{ij}, b_{ij}), \max (a'_{ij}, b'_{ij})), \max (a_{ij}, b_{ij})), \min (a'_{ij}, b'_{ij})) \]

\[= (\max (a_{ij}, b_{ij}), a'_{ij}b'_{ij})) \]

\[= AX_1B. \]

Hence, \((A \land B)X_1(A \lor B) = AX_1B.\)

The proof \((ii)\) is similar to that of \((i)\).

6. Conclusions

The set of all IFMs with respect to the operations \(X_1 \) and \(X_2 \) form a commutative monoid. The operations \(X_1 \) and \(X_2 \) of IFMs are satisfy the De Morgan’s laws. Distributive laws max-min and min-max compositions over \(X_1 \) and \(X_2 \) are proved and established some algebraic properties.

REFERENCES

11. H.Y.Lee and N.G.Jeong, Canonical form of a transitive intuitionistic fuzzy matrices,
Multiplicative Operations of Intuitionistic Fuzzy Matrices