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Abgtract. It is shown for all primesp>2 andy =1, that for each and every value>

1, the title equation has infinitely manyluimns. When x is even, then fop = 2,

3, the equation has exactly one solution in whighis prime, and in all other solutions
when p>2 @ is composite. Whernx is odd, then forp > 2 the equation has
solutions in whichq is either prime or composite. Numerical solutians also exhibited

for p>2 with odd and even values
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1. Introduction

The field of Diophantine equations is very old, w&arge, and no general method exists
to decide whether a given Diophantine equation &ag solutions, or how many
solutions. In most cases, we are reduced to $tatiyidual equations, rather than classes
of equations.

The literature contains a very large nuntfeaurticles on non-linear such individual
equations involving primes and powers of all kindgnong them are for example [1, 3,
4,5,7, 8,10, 13]. The title equation stemsnfr@p* + g’ = Z.

In this paper we discuss solutions to thepbantine equation

p+g=7 (1)
for all primes p> 2 when q is odd, prime or composite, arxl y, z are positive
integers.

In Section 2 fop=2 withy=1, andin Section 3 for all primgs> 3 with y =
1, the infinitude of solutions for each and evietgger x> 1 is established.

In both Sections 2 and 3, we considemexaluesx as x = 2n, whereas odd
valuesx asx = 21+ 1 whenn>1 is an integer. Although, in some places wddtou
use x even orx odd instead ok = 20 or x = 2n+ 1, for the sake of uniformity of
each theorem the notation is kept throughout.

2. Theequation p‘+q' = Z* when p=2and y=1
In this case our main interest is to determine ghkitions of this equation and in
particular whenq is prime.Nevertheless, solutions in whichy is composite are also
established. This is done in the following Theoreri.

63



Nechemia Burshtein

Theorem 2.1. Suppose in equation (=2 and y = 1. Then the equation
X+q=172 (2)
has:
(@) For each and every even valiesxactly one solution in whichy is prime,
and infinitely many solutions in whicky is composite.
(b) For each and every odd valxeinfinitely many solutions in whichg is prime
or composite.
Proof: A priori q is odd, therefore >3 is odd.
(@) Suppose thatx is even Denote x = 2n where n>1 is an integer. From (2) we
have
+q=172 (3)
implying thatq= Z'- (2)*= Z-2)(Z +2). If q is prime, then”Z-2'=1 andZ +
2"=q. SinceZ-2'=1 yieldsZ-1=¢-1)¢+ 1) =2, it follows that the only
solution of this equation iz = 3 and n= 3. Hence, forx = 6 andq= 17 prime
2°+17=3
is the only solution of equation (3) when> 2 is even andj is prime.
As a consequence, in every other solutioeqofation (3), the valugis composite.

We will now show that for each and everyueah equation (3) has infinitely many
solutions. Letn>1 be any fixed value, and henc& & fixed. For each fixed value

2" denote by z the smallest possible value such thatz* exceeds 2 for the first
time. Respectively, denoteq = z* - 2". For each valuez, there exist infinitely

many consecutive odd values > z, and respectively odd values

q> a such that equation (3) is satisfied. Thus,ftked valuen implies the existence

of infinitely many solutions to equation (3). &nwe consider each and every vahue
1, it therefore follows that equation (3) hafnitely many solutions for each and every
value n>1 in which q is composite as asserted.

It is noted that in the solution® 217 = 3, az 17 and z = 3.

The above argument may now be illusttafor example in the cases:=1 x =
2), n=2%k=4) and n=3 x=6).

n=1  2°+77 =1 2=3 q=77 composite
2?+621 =1 z=5 q =621 composite
n=2. 2'+65 =1 2=3 q =65 composite
2'+609 =" z=5 q = 60¢ composite
2*+2385=* z2=7 q =238°  composite
n=3  2°+561 =" z=5 q =561 composite

Part(a) is complete.
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(b) Suppose thak is odd.If x=1, we havejrom equation (2)
2+q = Z.
For each and every odd value> 3, certainly there exists an odd valeg so that the
above equation is satisfied. For the first five adtsecutive valuegz, we demonstrate
the following five solutions, namely:
2+79=3 2 +2399 =7 2 + 14639 = 11
and 79, 2399, 14639 are primes. Whereas
2+623=5 2 + 6559 =9

and 623, 6559 are composites.
Hence, whenx = 1, equation (2) has infinitely many solutianswvhich g is either
prime or composite.

If x> 1, denotex=2n+ 1 wheren>1 is aninteger. From (2) we have

2t +q=2, (4)

where g, z are odd. The proof that equation (4) has itdiy many solutions for each
and every valuen is the same as the proof of equation (3) wken2n (2n is replaced
by 2n +1), with one distinction, namely: the pringe occurs more than once.

We exhibit this case for the following twalvesn =1 k= 3) andn=2 (x=5).

n=1: 2°+73 A

z=3 q=73  Pprime
2°+617 =1 z=5 q =617 prime
2°+2393= " z2=7 q =239:  prime
n=2: 2°+49 =1 2=3 q =49 composite
2°+593 =1 z=5 q =597 prime
2°+2369= " z2=7 q =236¢  composite

Evidently, equation (4) has infinitely ma solutions for each and every value

n>1. For any given value>1 in equation (4), the question whenasor g equal
to a prime is still unsettled.

This concludes pafb), and the proof of Theorem 2.1. o

Remark 2.1. Following part(b) of Theorem 2.1., we conjecture that for each odd
value z> 3, there exists at least one odd valaad q prime satisfying 2+ q= 7.

3. Theequation p‘+q' = Z* when p>3 isprimeand y=1

In the following Theorem 3.1., we consider theatpn p*+q' = Z* when p>3 is
prime andy = 1. The infinitude of solutions for each andrgviexed prime p> 3 with
every valuex> 1 is established.

Theorem 3.1. Lety =1 inequation (1). The equation
p‘+q=7' p>3 isprime (5)
for each and every primp> 3 has:
(@) For each and every even vakuexactly one solution whem= 3 and q prime,
and infinitely many solutions in whicly is composite.
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(b) For each and every odd valueinfinitely many solutions in whichq is prime
or composite.
Proof: The value q is odd, therefore > 2 is even.
(@) Suppose thatx is even Denote x = 2n where n> 1 is an integer. From (5) we
have
p"+q= 7, (6)
and henceq = 7*- (p")? = @-p"(Z+p"). If q is prime, it follows thatZ-p" =
1 and Z+p" = q WhenZ-p" =1, thenZ-1=p" or g-1)g+1)=p" Letc
be a non-negative integer. Denate 1 = p° and z+ 1 =p™°. Then we obtaim®- (p"
% _1)=2 wheren> 2. Hence,p° = 1orp® = 2. If p° = 1, thenc = 0 andz =
2. Thus,z+ 1 =3 =p" implies that p=3 and n=1. The casep® = 2 is
impossible.
For all primesp> 3, x = 21, and g is prime, equation (6) has the only solutipn
=3,n=1&=2), q=7 andz = 2, namely:
F+7=2

Except for the above values, for all othalues p>3 andn > 1, the valueq in
equation (6) is composite. The first few such atioal solutions are:
F+247=4  3+175=4, 5+231=4 5+671=6, 7+207=4
Evidently, equation (6) has infinitely many sabas with q composite as asserted.
This concludes paf@g).

(b) Supposethat x isodd If x = 1, we haXe from equation (5)
p+tq=2z.

Certainly, for each and every fixed primp > 3, there exists a valug prime or
composite, such that the above equation is satisfiEhe solutions for the first three
consecutive primep with primesq and the respective valugs= 2, 4, 6 are:

3+13 =2 5+251 =% 7+1289 =6
Whereas, forp=3,5,7 andq is composite, we have:

3+25324 5+9995 = 10 7+9=2
Thus, for each and every prine> 3, the above equation has infinitely many sohgio
in which q is either prime or composite.

If x >1, denotex = 2n+ 1 wheren >1 is aninteger. From (5) we have
2n+1

pt +q =72\ (7
We will show that equation (7) has infinitely nyasolutions for every primegp with

each and every valua. Let p and n be any fixed values. Thus™* is fixed. For
each fixed valuep®™!, denote by z the smallest possible valug, such that z*
™! For each value

exceedsp®™? for the first time. Respectively, denotg = z*- p

E, there exist infinitely many consecutive even ealw > E, and respectively odd

values g > a so that equation (7) is satisfied. Hencetlierfixed primep, the fixed

value n implies that there exist infinitely many solut@oto equation (7). Since we
consider the infinite set of all primeg > 3, and the infinite set of all values> 1, it
follows for every primep with each and every value, that equation (7) has infinitely
many solutions. The valug is either prime or composite.
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The above argument may now be illustratadefcample in the following three
solutions of p*™* + q = 72 whenp=5 isfixed, andn=1,2,3 x=3,5, 7).

n=1. 8+131=4 z = 4, q =131 prime.
n=2: 5+971=4 z=8  q=971 prime.

n=3 5+26851=18 z =18, (=26851 composite.
Hence, for each and every fixed prinfg> 3 andn=1, 2,...k,..., there exist infinitely

many respective valueg> z satisfying equation (7) in which the valeg> q is
either prime or composite.

For p>3 andx> 1, the question when ig prime or composite is not pursued
here since it is beyond the scope of our study.

This completes the proof of pdk) and of Theorem 3.1. i

4. Conclusion

In the following six solutions the value is prime.

3'+13=2, F+229=4 F+13=4, 5+11=2, 5+131=4 5+971=8
Two questions may now be raised.

Question 1. Does p‘+q=7 has atleast one solution for each and eyeiye
p>3, x>1odd andq prime ?
The answer is affirmative fop =3, 5, 7.

Question 2. Does p*+q=7" has a solution for any fixed prime> 3, with each and
everyodd x>1 and g prime ?
The answer is affirmative fop=5 whenx=1, 3, 5.

We presume that other interesting questtomgerning equation (1) may be raised.
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