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Abstract. Circulant graphs are an important class of topahgistructures of
interconnection networks which have been used émades in the design of computer
and telecommunication networks due to their optirfellt tolerance and routing
capabilities. In this paper, we consider the pnobtd embedding the circulant networks
into gear and helm graphs to minimize the wirelengt
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1. Introduction
The geometrical structure of any communicationeysincluding internet is based on
graph. The logical setup of a computer is designét the help of graph [13]. An
interconnection network can be modelled as a gridglonsists of hardware and software
entities that are interconnected to facilitaficeent computation and communication.
These entities can be in the form of processoggases, memory modules or computer
systems. In other words, an interconnection netwafria system provides logically a
specific way in which all components of the syst@ connected. In this, the simulation
of one architecture by another is important. Thebfam of simulating one network by
another is modelled as a graph embedding probldra.need for ficient embedding
stems from at least twoftirent directions. If a network A can be embeddeal metwork
B, then all the algorithms developed for paralieqessing with network A can be easily
transported onto another processor network B. S¥gomapping parallel algorithms
onto parallel architectures often leads to embegldirthe control or data flow graphs of
the algorithms into the underlying graph of thewwk. While the general problem of
graph embedding is fllicult, by exploiting the special structure of théenconnection
schemes, a number of results relating to optimdleziding of one class of networks into
another have been developed. Embedding the stesctoay result in substantial savings
in communication time. The transmission delay isiraportant measure for the global
communication ficiency of an interconnection network.

Circulant graphs are an important class of topahagstructures of interconnection
networks which have been used for decades in theigmleof computer and
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telecommunication networks due to their optimaltf&alerance and routing capabilities.
They also constitute the basis for designing aeraita alignment networks for complex
memory systems. Undirected circulant networks dristie context of Mesh Connected
Computer suited for parallel processing of datahsas the well-known ILLIAC type
computers. By using circulant graph, we can adapperformance of the network to the
user needs.

The quality of an embedding can be measured byaioedost criteria, namely
dilation, expansion, congestion and wirelength. Tilation of an embedding is the
maximum distance between the images of adjacenesmod is the measure for the
communication time needed when simulating one nétwa another. The bandwidth is
the dilation if the host graph is a path. The egp@mof an embedding is the ratio of
the number of vertices &f to the number of vertices &

N\

4

Figure 1: Circulant graptG(8; {1, 2, 3})

The congestion of an embeddihgf G into H is the maximum number of edges of
the graphG that are embedded on any single edgd ahd the wirelength is nothing but
the congestion sum. The problem of embedding ixdiRplete[6].

There are several results on the congestion probfevarious architectures such as
complete trees in hypercubes [1], hypercubes inttsd2], ladders and caterpillars into
hypercubes [3], binary trees into hypercubes [émplete binary trees into grids and
extended grids with total vertex congestion 1 [Ii&pmplete hypercube in books [}
sequencid-ary trees into hypercubes [15], ternary tree mtpercube [7], enhanced and
augmented hypercube into complete binary treedfibeddings of circulant networks
[14] and hypercubes into cylinders, snakes andgiites [10] .

In this paper, we consider the problem of embedthiegcirculant networks into gear
and helm graphs to minimize the wirelength.

2. Basic concepts
In this section, we discuss the preliminaries negflfor this paper.

Definition 2.1. [2] Let G andH be finite graphs withm vertices.V (G) andV (H) denote
the vertex sets d& andH respectivelyE (G) andE (H) denote the edge sets®@fandH
respectively. Arembedding 6f G into H is defined as follows:

(i) fis a injective map fronv (G) — V (H)
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(ii) Pris an injective map fronk (G) to {Ps( f (u), f (v)) : Py f (u), f (v)) is a path irH

betweerf (u) andf (v)}. The graphG that is being embedded is calledidual graphor a
guest graphandH is called ahost graph Some authors use the nalabkelinginstead of
embedding.

Definition 2.2. [2] The edge congestionf an embeddind of G into H is the maximum
number of edges of the graghthat are embedded on any single edgel.ofet EC(G,
H(e)) denote the number of edges ) of G such thae s in the patHP; (u, v) betweerf
(u) andf (v) in H. In other words,
EC(G, H(e)) = |{(u, v) EE(G):e € Pr(u, v)}|

whereP; (u, v) denotes the path betwekfu) andf (v) in H with respect td.

The edge congestion problem of a gré&mto H is to find an embedding @&
into H that induce&£C(G, H).

Definition 2.3. [11] Thewirelengthof an embedding of G intoH is given by
WLt (G, H) =Xy e ec) Aa(F W), f (V) = Xeerm) ECr (G, H(e))
wherel, (f (w), f (v)) denotes the length of the p&Hu, v) in H. Then thewirelengthof
G intoH is defined as,
WL (G,H) = min WL (G, H)
where the minimum is taken over all the embeddings.

Definition 2.4. [14, 16] A circulant undirected graph, denoted Gyn;+S) where
S=1{1,2, EJ} n> 3 is defined as a graph consisting of the ver&X's {0, 1, - - 1
— 1} and the edge s&= {(i,]) : | —i|=s(modn), s€S}. See Figure 1.

Definition 2.5. [8] A wheel graphw, of order n is a graph that contains an outer cgtle
ordern — 1, and for which every vertex in the cycle isweected to one other vertex
(which is known as the hub). The edges of a whdethvinclude the hub are called
spokes. See Figure 2(a). This plays an importaté o the circuit layout and

interconnection network designs.

Definition 2.6. [8] A gear graph, denoted 8y, is a graph obtained by inserting an extra
vertex between each pair of adjacent vertices empénimeter of a wheel grapth. Thus,

G, has & + 1 vertices andrBedges. Gear graphs are also known as cogwheels and
bipartite wheels. See Figure 2(b).

Definition 2.7. [8] The helm grapli,is the graph obtained from an wheel grajgh by
adjoining a pendent edge at each node of the c$ele Figure 2(c).

Lemma 2.8. (Congestion lemmd11] LetG be anr-regular graph anflbe an embedding
of G into H. Let Sbe an edge cut ¢1 such that the removal of edges3itavesH into 2
component$d; andH, and letG, = f(H,) andG, =f(H,). Also Ssatisfies the following
conditions:

(i) For every edgéa, b) € G;,i = 1,2, Pr (f (a),f (b)) has no edges i
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(ii) For every edgéa, b) in Gwith a € G;andb € G,, Py (f (a), f (b)) has exactly one
edge inS

(iii) G;is a maximum subgraph érvertices wheré= M(G,)|.

ThenEG; (9 is minimum anECG (S =rk — 2 |E(Gy)]-

[$2]

Figure 2:(a) Wheel graph (b) Gear graph (c) Helm graph

Lemma 2.9. (Partition lemma) [11] LetG— H be an embedding. Le§[ S,, ...S} be a
partition ofE(H) such that eac§ is an edge cut dfl. Then,

14
WL (G, H) = Zch(si).

i=1
Lemma 2.10. (k-Partition Lemma) [11] LetG—H be an embedding. LekE(H)] denote
a collection of edges &1 with each edge iRl repeated exactlytimes. Let §, S, ... S}
be a partition ofE(H)] such that each is an edge cut dfl. Then

p
1
WL (G, H) = EZ EC,(S).
i=1

3. Embedding algorithms
Theorem 3.1. [14] The number of edges in a maximum subgraphk orertices of
G(n;x9), S={1, 2, - - -j}, 1 <j<|n/2], n> 3 is given by,
k(k — 1)
( ;
i(j + 1
§= kj—](]T),j+1<kSn—j

() -2+ @+ D= @+ D <k <

k<j+1

Theorem 3.2. [14] A set ofk consecutive vertices @(n;x1), 1<k<ninduces a maximum
subgraph of5(n; +S) whereS={1, 2, - - -j}, 1L <j<[n/2],n> 3.

Embedding Algorithm A

Input: A circulant networkG(2n + 1; {1, 2, - - +j}), 1 <j <|n/2],n> 3 and a gear
graph,Genia
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Output: An embeddingf of G(2n+ 1;{1,2,- - -,j}) into Gywi given byf(x) =x with
minimum wirelength.

Algorithm: Label the consecutive vertices®f2n+ 1;{1,2,- - -j}), 1<j<|n/2], n>3 as 0,
1, ..., 2vin the clockwise sense. Label the outer cycleiegstofG,.., as 0, 1, ...,2- 1
and label the hub vertex as.2

Proof of correctness of Algorithm A

Let S={(2i-2,2-1), (4+ 1,4+ 2), (N,2)}, 1<i<n where the labels are taken moah)(2
except the label of the hub vertex be the edge autbe given graph. The edge sets
namely {(d-2,2-1),(2+ 1,2+ 2), (2,2))}, 1<i<n constitutes all the edges of. Thus
{S,: 1<i < n}is a partition of E(Gas1)]. Thus {S, S, - - -, § is a partition of
[E(G2n+1)]. See Figure 3(a). For eathE(G.n1 \S) has two components; and Hi,.
Without loss of generality, lét;; = {(i,i + 1), { + 1,i + 2)}. LetG;; =f*(H;) andG;, =f
“(Hi»). ThenG;; induces an edge & which by Theorem 3.2 is an optimal set. Thus each
S satisfies conditions (i), (ii) and (iii) of the @gestion Lemma. Therefor&C (S) is
minimum. The Partition Lemma implies that the weredth is minimum.

The proof of the following theorem is an easy cousace of Embedding Algorithm
A.

[ 2i-2
Si
Figure 3(a): Edge cuts of gear graph

Theorem 3.3. The exact wirelength d&(2n+ 1;{1,2,- - -j}) into Gy.1, =3, is given by
WLGE2n+ 1:{1,2,- - -j}), Gana) = 2(3) ).

Embedding Algorithm B
Input: A circulant networkG(2n+ 1;{1,2,- - -j}), 1 <j <|n/2], n> 3 and a helm graph,
H2n+l-
Output: An embeddingf of G(2n+ 1;{1,2,- - 4}) into H,.1 given by f(x) =x with
minimum wirelength.
Algorithm: Label the consecutive vertices®{2n+ 1;{1,2,- - -j}),1<<|n/2], n>3 as 0,
1, ..., 2rin the clockwise sense. Label the verticeblgf; as follows:
() Label the pendant vertices consecutively as 0,,2n.— 2 in the clockwise sense.
(i) Label the vertices on the cycle consecutively a3, 1.., 21 — 1 in the clockwise
sense.
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(i) Label the hub vertex asn2

Proof of correctnessof Algorithm B

Let S={(2i-2,3-1)}, 1<i<n, and letS={(2i-1,2+ 1), (4+3, 4 + 5), (N, 2 + 1), (1, 2

+ 3)}, 1<i<n, where the labels are taken mag(2xcept the label of the hub vertex be
the edge cuts of the given graph. The edgeSetd - 1,4+ 1), (0, 2 + 1) : 1<i<n}
constitutes all the edges K1 exactly once. Similarly, the edge s&, {(2i+ 3, 2+ 5),
(2n, 2i+ 3) : 1<i < n} constitutes all the edges blk,,; exactly once. Thusy, S : 1<i<

n} is a partition of [E(H,n.1)]. See Figure 3(b). For eachl <i < n, E(H,.1\S) has two
component$d;; andH;,. Without loss of generality, &4, = {(2i — 2)}. LetG;; = f(H;)
andG;, =f ‘1(Hiz). ThenG;; induces an edge @& which by Theorem 3.2 is an optimal
set. Thus eacl§ satisfies conditions (i), (i) and (iii) of the @gestion Lemma.
Therefore,EC; (S) is minimum. Similarly, for each, 1 <i < n, E(Hz::\S) has two
componentsd;; andH;,. Without loss of generality, léd;, = {(2i, 2 + 1), (A + 2, 2 +
3)}for 1<i<n. LetGy =f'(Hy) andG;, = f "}(H;5). ThenG;; induces an edge @&
which by Theorem 3.2 is an optimal set. Thus eadatisfies conditions (i), (i) and (iii)
of the congestion lemma. TherefoleC (S) is minimum. The 2-Partition Lemma
implies that the wirelength is minimum.

L 3
D-l 2
2n-2 o 2n-1 Lo
.
3,
- 2i-1" H
2n-3 5n . IS
> 1 ® 2i-2
2n-4 E i
P2 o !
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MA\\*:ﬂ 2i+1
' /
/ 2i +3 2i
»
2i +2

Figure 3(b): Edge cuts of helm graph

The proof of the following theorem is an easy cousamce of Embedding Algorithm B.

Theorem 3.4.The exact wirelength @b(2n+ 1;{1,2,- - -j}) into Han.q, >3, is given by
WL(G2n+1;{1, 2, - - +j}), Honea ) =GN =&,

4. Conclusion
In this paper, we have produced the exact wirekenfjtirculant network on certain
wheel related graphs namely, gear and helm graphs.
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