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Abstract. In this paper, an algorithm is developed to find the paradoxical solution of multi 
objective transportation problem with linear constraints. It also attempts to obtain its best 
paradoxical pair and paradoxical range of flow by using the sufficient condition of the 
existing paradox. Numerical illustration is also provided to check the feasibility. 
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1. Introduction 
The term Paradox arises when a transportation problem admits a total cost which is lower 
than the optimum. This is attainable by shipping larger quantities of goods over the same 
routes that were previously chosen as optimal which is unusual phenomenon noted by 
Szwarc (1971). The classical transportation problem is the name of a mathematical model 
has a special mathematical structure. The mathematical formulation of a large number of 
problems conforms to this special structure. Hitchcock (1941) originally developed the 
basic linear transportation problem. Klingman and Russel (1974 and 1975) introduced a 
specialized method for solving a transportation problem with several additional linear 
constraints. Hadley (1987) gave the detailed solution procedure for solving linear 
transportation problem. Till date, several researchers studied comprehensively to solve 
transportation problem cost minimizing its cost in various ways. 

In some situations, if we obtain more flow with lesser cost than the flow 
corresponding to the optimum cost then we say paradox occurs. Charnes and Klingman 
(1971), Szwarc (1973), Adlakha and Kowalski (1998) and Storoy (2007) considered the 
paradoxical transportation problem. Gupta et al (1993) considered a paradox in linear 
fractional transportation problem with mixed constraints. Joshi and Gupta (2010) studied 
paradox in linear plus fractional transportation problem. Basu, Acharya and Das (2012) 
developed an algorithm for finding all paradoxical pairs in a linear transportation 
problem. Acharya, Basu and Das(2015), discussed more-for-less paradox in a 
transportation problem under fuzzy environment with linear constraints. Sophia Porchelvi 
and Anna Sheela (2015) developed an algorithm to find linear multi-objective fractional 
transportation problem and its paradoxical solution. 
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This Paper is organized as follows: In Section 2 Basic Definitions are given. 
Section 3 explains the mathematical formulation and sufficient condition for the 
existence of paradox of linear Multi objective transportation problem. In Section 4, an 
Algorithm is developed to solve linear Multi objective transportation problem. In Section 
5, a Numerical Example is given to show the optimal solution of linear Multi objective 
transportation problem. In that solution, the paradoxical range of the flow and the best 
paradoxical pair is found. The conclusion of the paper is given in Section 6. 
 
2. Preliminaries 
Paradox in a transportation problem: In a transportation problem if we can obtain more 
flow (F1) with lesser cost (Z1) than the optimum flow (F0) corresponding to the optimum 
cost (Z0) i.e.F1> F0 and Z1< Z0, then we say that a paradox occurs in a transportation 
problem.  
 
2. Cost-flow pair: If the value of the objective function is Z0 and the flow is F0 
corresponding to the feasible solution X0 of a transportation problem, then the pair 
corresponding to the feasible solution X0. 
 
3. Paradoxical pair: A cost-flow pair, (Z,F) of an objective function is called paradoxical 
pair ifZ< Z0and F>F0 where Z0 is the optimum cost and F0 is the optimum flow of the 
transportation problem. 
 
4. Best paradoxical pair: The paradoxical pair(Z*, F*) is called the best paradoxical pair of 
a transportation problem if for all paradoxical pair (Z, F), either Z*< Z or Z*=Z but F*>F. 
 
5. Paradoxical range of flow: If F0 be the optimum flow and F* be the flow corresponding 
to the best paradoxical pair of a transportation problem then [F0, F*] is called paradoxical 
range of flow. 
 
3. Mathematical formulation 
Consider the following linear Multi-Objective Transportation problem (LMOTP) 
(P1): Minimize Z = �∑ ���

� ���, ∑ ���
	���,(�,�)∈ …… .∑ ���

����,(�,�)∈(�,�)∈ � 
Subject to  ∑ ��� = ���∈�  , i∈ � 
∑ ��� = ���∈�  , j∈ � 
X ij 	≥ 0∀	(�, �) ∈   
where ai is the ith source, bj is the jth destination 
X ij= the amount transported from the ith source to the jth destination. 
Cl

ij = the cost per unit amount transported from ith source to the destination corresponding 
to k objectives. i.e. l=1, 2,3,...k. 
 
In this paper we assume that ai> 0, i∈ � and ��>0, j∈ �and ∑ ���

!
�"# = ��,∑ ���

�
�"# = ��, 

Let X0= {���
$ \ (i,j)	∈ I x J} be a basic feasible solution corresponding to the basis B of the 

problem P1 and the value of the objective function Z1,2,.....k corresponding to the basic 
feasible solution X0 is given below. 
Z1= ∑ ���

� ���	(�,�)∈ , Z2 = ∑ ���
	���		,(�,�)∈ ………	Zk = ∑ ���

����	(�,�)∈  
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Let F0 be the corresponding flow. 
Then F0 = ∑ ���∈% = ∑ ���∈% . 
Let (UL

i , V
L

j), (L=1,2,3....k) be the corresponding dual variable associated with the above 
k problems (Pl), so that Ui

L + VL
j = CL

ij for (i, j)∉ B ∀	L= 1,2,3,....k. 
                         Let CLij = (Ui

L+VL
j) - Cij 

If CL
i j< 0 for (i , j) ∉ B ∀L=1,2,3,...k, then the solution is optimal. 

 
Theorem 1. The sufficient condition for the existence of paradoxical solution of (P1) is 
that if ∃	at least one cell (r,s) ∉ B in the optimum table of (P1) where arand bs are replaced 
by ar+ l and bs+ l respectively(l>0) then (Ui

L + Vi
L) < 0, L=1,2,3...k. 

Proof: Let Z1,2,3...k be the value of the objective function and F1,2,3....k be the optimum flow 
corresponding to the optimum solution X1,2,3,...k of problem P1. The dual variables Ui

L and 
V i

L are given by  
Ui

L+ Vi
L = Cij , (i , j) ∈J 

Then, Z1= ∑ ���
� ���	(�,�)∈ , Z2 = ∑ ���

	���		,(�,�)∈ ………	Zk = ∑ ���
����	(�,�)∈  

and F0 = ∑ ��
�
�"# = ∑ ��

!
�"#  

Now, let ∃ at least one cell (r,s) ∉ B, where ar and  bs are replaced by ar+ l and bs+ l 
respectively (l>0) in such a way that the optimum basis remains same, then the value of 
the objective function Z is given by  
Z = [ Z0 + l (Ui

L + Vi
L)] 

The new flow F is given by  
F = ∑ ��

�
�"#  + l = ∑ ��

!
�"#  + l = F0 + l 

F - F0 = l > 0 
Therefore, for the existence of paradox we must have Z –Z1,2,3,...k< 0.Hence the  
sufficient condition for the existence of paradox is that	∃ at least one cell (r,s) ∉ B  
in the optimum table such that if  ar and bs are replaced by ar + l and bs + l  respectively.  
Then ( l> 0) then l(Ui

L + Vi
L) < 0, L=1,2,3...k. 

(i.e) (Ui
L + Vi

L) < 0, the solution is optimal. 
 
4. Algorithm for solving linear multi objective transportation problem 
Step 1: Find the cost-flow pair (Zi ,Fi) for the optimum solution X0, (i= 1,2,3,.....k) 
 
Step 2: Fix i=1 
 
Step 3: Find all cells where (r, s) ∉ B such that (Ur +Vs) <0 if it exists otherwise go to 
step 8. 
 
Step 4: Among all cells (r, s) ∉ B satisfying step 3 find min flow for l=1 which enter into 
the existing basis whose corresponding cost is minimum. Let (Zi,Fi) be the new cost flow 
pair corresponding to the optimum solution Xj (j= 1,2,...k) 
 
Step 5: Write ( Zj, Fj). 
 
Step 6: By re-fixing i=i+1 
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Step 7: Repeat the procedure goto step 3. 
 
Step 8: We write the best paradoxical pair (Z* ,F*) = (Zj, Fj) for the optimum solution X* 
=Xj. 
Step 9: Finding the paradoxical solution, end at this stage. 
 
5. Numerical illustration 
Consider the following Multi objective linear transportation problem using the numerical 
values, as tabulated below: 
 

Table 1: 
 D1 D2 D3 D4 ai 

 
O1 

4 
1 
1 
 

10 
9 
6 

11 
9 
6 

35 
27 
20 

 
20 
 

 
O2 

38 
32 
5 

25 
22 
2 

10 
6 
13 

49 
42 
15 

 
10 

 
O3 

19 
17 
6 

8 
2 
1 

25 
22 
10 

35 
28 
11 

 
15 
 

 
O4 

10 
6 
6 

12 
5 
2 

15 
6 
4 

13 
7 
3 

 
35 

bj 25 25 15 15  

 
Solving the above problem using the Northwest corner method, the optimal Multi 
objective transportation table is presented in Table II. 

 
Table  II: 

 D1 

 
b1=25 

D2 

 
b2=25 

D3 

 
b3=15 

D4 

 
b4=15 

 
U1

i  U
2
i   U

3
i 

 
O1: a1= 20 4     1     1 

(20) 
0     0     0 

 

10     9     6 
 

-9     -9     -2 

11     9     6 
 

-6     -8     0 

35     27    20 
 

-8     -7      -1 

 
-21   -14   -4 

O2: a2= 10 38    32     5 
(5) 

0       0      0 
 

25     22     2 
(5) 

0      0       0 

10    6      13 
 

28    23      4 

49   42      15 
 

26    24       3 

 
13     17     0 
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O3: a3= 15 19   17      6 
 

21  12      4 

8       2        1 
(15) 

0       0       0 

25  22      10 
 

11     3       3 

35     28    11 
 

9       4       2 

 
-4    -3     -1 

O4: a4= 35 10    6         6 
 

25    15       5 
 

12      5       2 
(5) 

0       0       0 

15    6         4 
(15) 

0      0         0 

13    7         3 
(15) 

0      0         0 

 
0      0        0 

V1
j 

V2
j 

V3
j 

 

25 
15 
5 

12 
5 
2 

15 
6 
4 

13 
7 
3 

 

 
For this solution is X= {20, 0, 0, 0, 5, 5, 0, 0, 0, 5, 0, 0, 0, 5, 15, 15} for which Z = 
(995,540,185), Z1=995, Z2=540, Z3=185.  
When we check the sufficient condition for the existence of paradoxical solution (Ur+ Vs) 
where(r, s)	∄	B in Table 1, we observe that for Z1, a paradox occurs in the cell 
(1,2)(1,3)(1,4) but not in (2,3),(2,4),(3,1),(3,3),(3,4),(4,1). 
Next Z2, a paradox occurs in the cell (1,2)(1,3)(1,4) but not in (2,3),(2,4),(3,1), (3,3), 
(3,4),(4,1). 
Next Z3, a paradox occurs in the cell (1,2),(1,4) but not in (1,3), (2,3), (2,4), (3,1), (3,3), 
(3,4) and (4,1). 
Hence Z1, Z2, Z3 the paradox occurs commonly in the cell (1,2) and (1,4). 
Applying Step 1: The cost flow pair is (995, 540, 185) (80, 80, 80) corresponding to the 
optimum solution X0 = {X 11= 20, X21 =5, X22 = 5, X32 =5, X42 = 5, X43 = 15, X44 = 15} 
Step 2: Fix i=1 
Step 3: Now check the sign of Ur+ Vs and we obtain for the non-basic cells (1, 2) and (1, 
4), the sign that is negative. 
Step 4: Hence consider l=1 enters in to the optimum basis for the cell (1, 2) 

 
Table III: 

 D1 

 
b1=25 

D2 

 
b2=26 

D3 

 
b3=15 

D4 

 
b4=15 

U1
i  U

2
i   U

3
i 

 

O1:  a1= 20 4      1      1 
(21) 

 

10     9     6 
 
 

11     9     6 
 
 

35     27      20 
 
 

 
-21   -14   -4 

O2:  a2= 10 38    32     5 
(4) 

 

25     22     2 
(6) 

 

10   6    13 
 
 

49     42      15 
 
 

 
13     17     0 

O3:  a3= 15 19 17     6 
 
 

8     2     1 
(15) 

 

25      22      
10 
 
 

35     28      11 
 
 

 
-4     -3     -1 

O4:  a4= 35 10  6      6 
 
 

12     5      2 
(5) 

 

15   6      4 
(15) 

 

13     7        3 
(15) 

 

 
0      0       0 
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V1
j 

V2
j 

V3
j 

 

25 
15 
5 

12 
5 
2 

15 
6 
4 

13 
7 
3 

 

 
The corresponding paradoxical pair is (986, 531,183) (81, 81,81). 
For the cell (1,4)Multi objective transportation table is presented in Table IV 

 
Table IV: 

 D1 

 
b1=25 

D2 

 
b2=25 

D3 

 
b3=15 

D4 

 
b4=16 

 
U1

i  U
2
i     U

3
i 

 
O1:  a1= 20 4        1       1 

(21) 
 

10       9      6 
 
 

11     9     6 
 
 

35    27     20 
 
 

 
-21  -14    -4 

O2:  a2= 10 38    32       5 
(4) 

 

25   22     2 
(6) 

 

10   6     13 
 
 

49  42    15 
 
 

 
13     17    0 

O3:  a3= 15 19   17       6 
 
 

8       2        1 
(15) 

 

25  22     10 
 
 

35  28     11 
 
 

 
-4    -3     -1 

O4:  a4= 35 10    6      6 
 
 

12     5       2 
(4) 

 

15   6        4 
(15) 

 

13   7        3 
(16) 

 

 
0     0        0 

V1
j 

V2
j 

V3
j 

 

25 
15 
5 

12 
5 
2 

15 
6 
4 

13 
7 
3 

 

 
The corresponding paradoxical pair is (987, 533,184) (81, 81,81) 
The min cost = {(986, 531, 183), (987, 533, 183)} = (986, 531, 183). 
Hence l=1 enters in the optimum basis from the cell (1, 2) and corresponding table is 
Table IV, the corresponding paradoxical pair is (986, 531, 183) (81, 81, 81). Repeating 
this process in the next table 

 
Table V: 

 D1 

 
b1=25 

D2 

 
b2=27 

D3 

 
b3=15 

D4 

 
b4=15 

 
U1

i  U
2
i   U

3
i 

 
O1:  a1= 20 4      1      1 

(22) 
 

10     9     6 
 
 

11     9     6 
 
 

35   27     20 
 
 

 
-21  -14   -4 

O2:  a2= 10 38    32     5 
(3) 

 

25     22     2 
(7) 

 

10    6      13 
 
 

49   42     15 
 
 

 
13    17    0 

O3:  a3= 15 19   17       6 8      2       1 25   22     10 35  28    11  
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(15) 
 

 
 

 
 

-4   -3    -1 

O4:  a4= 35 10   6      6 
 
 

12     5       2 
(5) 

 

15    6       4 
(15) 

 

13   7      3 
(16) 

 

 
0     0      0 

V1
j 

V2
j 

V3
j 

 

25 
15 
5 

12 
5 
2 

15 
6 
4 

13 
7 
3 

 

 
The corresponding paradoxical pair is (977, 522, 181) (82, 82, 82) 
Henceforth from the final Table-VI the best paradoxical pair and the paradoxical range of 
flow showing an increase in the flow within the value of the objective function, and thus 
decreases from the optimal solution of the Multi Objective linear transportation problem. 

 
Table VI: 

 D1 

 
b1=25 

D2 

 
b2=30 

D3 

 
b3=15 

D4 

 
b4=15 

 
U1

i  U
2
i   U

3
i 

 
O1:  a1= 20 4       1        1 

(25) 
 

10     9     6 
 
 

11     9     6 
 
 

35   27    20 
 
 

 
-21  -14  -4 

O2:  a2= 10 38    32      5 
(0) 

 

25     22     2 
(10) 

 

10   6     13 
 
 

49    42     15 
 
 

 
13   17    0 

O3:  a3= 15 19   17      6 
 
 

8       2      1 
(15) 

 

25   22    10 
 
 

35    28     11 
 
 

 
-4   -3   -1 

O4:  a4= 35 10    6      6 
 
 

12     5     2 
(5) 

 

15    6      4 
(15) 

 

13    7      3 
(15) 

 

 
00      0 

V1
j 

V2
j 

V3
j 

 

25 
15 
5 

12 
5 
2 

15 
6 
4 

13 
7 
3 

 

 
The corresponding paradoxical pair is (950, 495,175) (85, 85, 85)  
Applying step 8: The best paradoxical pair is (Z*, F*) = {(950, 495, 175) (85, 85, 85)}. 
Corresponding to the optimum solution X0 = {X 11= 25, X21 =0, X22 = 10, X32 =15, X42 = 
5, X43 = 15, X44 = 15} and the paradoxical range of flow is [F0, F*] = (80, 80, 80) (85, 85, 
85). 
 
6. Conclusion 
In this paper, a new algorithm is developed to solve the paradoxical solution of linear 
Multi objective transportation problem. This algorithm gives step by step procedure for 
the development of finding the best paradoxical pair and a paradoxical range obtained. 
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