Annals of Pure and Applied Mathematics Vol. 15, No. 2, 2017, 193-200 ISSN: 2279-087X (P), 2279-0888(online) Published on 11 December 2017 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v15n2a5

Annals of **Pure and Applied Mathematics**

Multi-Fuzzy BG-ideals in BG-algebra

R.Muthuraj¹ and S.Devi²

 ¹PG and Research Department of Mathematics H.H.The Rajah's College, Pudhukottai-622001, Tamilnadu, India E-mail: rmr1973@yahoo.co.in
 ²Department of Mathematics, PSNA College of Engineering and Technology Dindigul-624622, Tamilnadu, India Email: sdevisaran1982@gmail.com

Received 1 November 2017; accepted 9 December 2017

Abstract. Multi-fuzzy set theory is an extension of fuzzy set theory, which deals with the multi-dimensional fuzziness. In this paper, we apply the concept of multi-fuzzy sets to ideals in BG-algebra and introduce the notion of multi-fuzzy BG-ideals, the multi-level subset of BG-ideals. And also we discuss some related properties of multi-fuzzy BG-ideals based on level subset of it. Also we define the inverse homomorphic images of multi-fuzzy BG-ideals and present some of its properties.

Keywords: BG-algebra, BG-ideal, Fuzzy BG-ideal, Multi-level subset of multi-fuzzy BG-ideal, Homomorphism.

AMS Mathematics Subject Classification (2010): 06F35, 03G25, 08A72, 03E72, 47S40

1. Introduction

The notion of a fuzzy subset was initially introduced by Zadeh [8] in 1965, for representing uncertainity. In 2000, Sabu and Ramakrishnan [9,10] proposed the theory of multi-fuzzy sets in terms of multi-dimensional membership functions and investigated some properties of multi-level fuzziness. Theory of multi-fuzzy set is an extension of theory of fuzzy sets. Complete characterization of many real life problems can be done by multi-fuzzy membership functions of the objects involved in the problem.

Imai and Iseki introduced two classes of abstract algebras: BCK algebras and BCI-algebras [1,2,3]. It is shown that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. Neggers and Kim [4] introduced a new notion, called a B-algebra. In 2005, Kim and Kim [6] introduced the notion of a BG-algebra which is a generalization of B-algebras. With these ideas, fuzzy subalgebras of BG-algebra were developed by Ahn and Lee [7]. Muthuraj et al. [11] presented fuzzy ideals in BG-algebra in 2010. Muthuraj and Devi [12] introduced the concept of multi-fuzzy subalgebra of BG-algebra in 2016. In this paper, we define a new algebraic structure of multi-fuzzy ideals in BG-algebra and discuss some of their related properties based on level subsets. Also, we investigate the properties of multi-fuzzy BG-ideals of BG-algebra under homomorphism.

2. Preliminaries

In this section, the basic definitions of a BG-algebra, BG-ideal, multi-fuzzy sets are recalled. We start with

Definition 2.1. A non-empty set X with a constant 0 and a binary operation "*" is called a BG-algebra if it satisfies the following axioms:

1. x * x = 0

2.
$$x * 0 = x$$

3. $(x * y) * (0 * y) = x \forall x, y \in X$.

Example 2.2. Let $X = \{0, 1, 2\}$ be a set with the following table :

*	0	1	2		
0	0	1	2		
1	1	0	1		
2	2	2	0		
Table 1					

Then (X; *, 0) is a BG-algebra.

Definition 2.3. Let S be a non-empty subset of a BG-algebra X, then S is called a subalgebra of X if $x * y \in S$ for all x, $y \in S$.

Definition 2.4. Let X be a BG-algebra and I be a subset of X. Then I is called a BG-ideal of X if it satisfies the following conditions:

(i). $0 \in I$ (ii). $x * y \in I$ and $y \in I \Rightarrow x \in I$ (iii). $x \in I$ and $y \in X \Rightarrow x * y \in I$

Definition 2.5. Let μ be a fuzzy set in a BG-algebra X. Then μ is called a fuzzy subalgebra of X if $\mu(x * y) \ge \min\{\mu(x), \mu(y)\}, \forall x, y \in X.$

Definition 2.6. Let μ be a fuzzy set in a BG-algebra X. Then μ is called a fuzzy BG-ideal of X if it satisfies the following inequalities :

(i). $\mu(0) \ge \mu$ (x) (ii). $\mu(x) \ge \min \{ \mu(x * y), \mu(y) \}$ (iii). $\mu(x * y) \ge \min \{ \mu(x), \mu(y) \} \forall x, y \in X$

Definition 2.7. A mapping $f : X \to Y$ of a BG-algebra is called a homomorphism if $f(x * y) = f(x) * f(y) \quad \forall x, y \in X$.

Remark 2.1. If $f: X \to Y$ is a homomorphism of BG-algebra then f(0) = 0.

Definition 2.8. Let X be a non-empty set. A multi-fuzzy set A in X is defined as a set of ordered sequences:

A = {(x, $\mu_1(x), \mu_2(x), \dots, \mu_i(x), \dots$) : $x \in X$ }, where $\mu_i : X \to [0,1]$ for all i. **Remark 2.2.**

(i). If the sequences of the membership functions have only k-terms (finite number of

Multi-Fuzzy BG-ideals in BG-algebra

terms), k is called the dimension of A.

- (ii). The set of all multi-fuzzy sets in X of dimension k is denoted by $M^kFS(X)$.
- (iii). The multi-fuzzy membership function μ_A is a function from X to $[0,1]^k$ such that for all x in X, $\mu_A(x) = (\mu_1(x), \mu_2(x), \dots, \mu_k(x))$
- (iv). For the sake of simplicity, we denote the multi-fuzzy set $A = \{(x, \mu_1(x), \mu_2(x), ..., \mu_k(x)): x \in X\}$ as $A=(\mu_1, \mu_2, ..., \mu_k)$.

Definition 2.9. Let k be a positive integer and let A and B in $M^kFS(X)$, where $A = (\mu_1, \mu_2, \dots, \mu_k)$ and $B = (\nu_1, \nu_2, \dots, \nu_k)$, then we have the following relations and operations : i). $A \subseteq B$ if and only if $\mu_i \le \nu_i$, for all i=1,2,...,k; ii). A = B if and only if $\mu_i = \nu_i$, for all i=1,2,...,k; iii). $A \cup B = (\mu_1 \cup \nu_1, \dots, \mu_k \cup \nu_k) = \{(x , \max(\mu_1(x), \nu_1(x)), \dots, \max(\mu_k(x), \nu_k(x))) : x \in X\}$ iv). $A \cap B = (\mu_1 \cap \nu_1, \dots, \mu_k \cap \nu_k) = \{(x , \min(\mu_1(x), \nu_1(x)), \dots, \min(\mu_k(x), \nu_k(x))) : x \in X\}$

Definition 2.10. Let A be a multi-fuzzy set of a BG-algebra X. For any $t = (t_1, t_2, \dots, t_k)$ where $t_i \in [0,1]$, for all i, the set $U(A; t) = \{x \in X / A(x) \ge t\}$ is called the multi-level subset of A.

Definition 2.11. Let A be a multi-fuzzy set in a BG-algebra X. Then A is called a multi-fuzzy subalgebra of X if $A(x * y) \ge \min \{A(x), A(y)\} \forall x, y \in X$.

3. Multi-fuzzy BG-ideal

In this section, the notion of multi-fuzzy BG-ideal is introduced and some of its properties are discussed.

Definition 3.1. Let A be a multi-fuzzy set in X. Then A is called a multi-fuzzy BG-ideal in X if it satisfies the following conditions:

 $\begin{array}{ll} (i). \ A(0) & \geq \ A(x) \\ (ii). \ A(x \) & \geq \ \min \ \{ \ A(x \ * \ y) \ , \ A(y) \ \} \\ (iii). \ A(x \ * \ y \) & \geq \ \min \{ \ A(x) \ , \ A(y) \ \} \ \forall \ x \ , \ y \in X. \end{array}$

Example 3.2. Consider a BG-algebra $X = \{0, 1, 2\}$ with the table 1 in Example 2.2. Define a multi-fuzzy set $A : X \rightarrow [0,1]$ by $A(0) = A(1) = (r_1, r_2)$ and $A(2) = (s_1, s_2)$ where $r_1, r_2, s_1, s_2 \in [0,1]$ with $r_1 < s_1$ and $r_2 < s_2$. Then A is a multi-fuzzy BG-ideal in X.

Theorem 3.3. Let X be a BG-algebra. Then A is a multi-fuzzy BG-ideal of X if and only if A is a multi-fuzzy subalgebra of X.

Proof: Every multi-fuzzy BG-ideal of a BG-algebra X is a multi-fuzzy subalgebra of X. Conversely, let A be a multi-fuzzy subalgebra in X.

Let x , $y \in X$.

i)
$$A(0) = A(x * x)$$

 $\geq \min \{A(x), A(x)\} = A(x) \quad \forall x \in X$
ii) $A(x) = A((x * y) * (0 * y))$
 $\geq \min \{A(x * y), A(0 * y)\}$

$$\geq \min \{ A(x * y), \min \{ A(0), A(y) \} \}$$

 $\geq \min \{ A (x * y), A(y) \}$

Hence A is a multi-fuzzy BG-ideal in X.

Theorem 3.4. Let A_1 and A_2 be two multi-fuzzy BG-ideals of a BG-algebra X. Then $A_1 \cap A_2$ is also a multi-fuzzy BG-ideal in X. **Proof :** Let x , $y \in A_1 \cap A_2$

Then x , $y \in A_1$ and x , $y \in A_2$ i) $A_1 \cap A_2(0) =$ $A_1 \cap A_2(x * x)$ min { $A_1(x * x)$, $A_2(x * x)$ } = \geq min { min { $A_1(x)$, $A_1(x)$ }, min { $A_2(x)$, $A_2(x)$ } } min { $A_1(x)$, $A_2(x)$ } = $A_1 \cap A_2(x)$ = ii) $A_1 \cap A_2(x) = \min \{ A_1(x), A_2(x) \}$ min { $A_1(x * y)$, $A_1(y)$ } , min { $A_2(x * y)$, $A_2(y)$ } \geq min { $A_1(x * y)$, $A_2(x * y)$ } , min { $A_1(y)$, $A_2(y)$ } } = min { $A_1 \cap A_2(x * y)$, $A_1 \cap A_2(y)$ } iii) $A_1 \cap A_2(x*y) = \min \{ A_1(x*y), A_2(x*y) \}$ $\geq \min \{ \min \{ A_1(x), A_1(y) \}, \min \{ A_2(x), A_2(y) \} \}$ = min { min { $A_1(x)$, $A_2(x)$ } , min { $A_1(y)$, $A_2(y)$ } } $= \min \{ A_1 \cap A_2(x), A_1 \cap A_2(y) \}$ Hence $A_1 \cap A_2$ is a multi-fuzzy BG-ideal in X.

Theorem 3.5. Let A be a multi-fuzzy BG-ideal of a BG-algebra X. If $x \le y$ then $A(x) \ge A(y)$ i.e., order reversing. **Proof :** Let x, $y \in X$ such that $x \le y$. Then x * y = 0Since A is a multi-fuzzy BG-ideal in X, $A(x) \ge \min \{A(x * y), A(y)\}$ $= \min \{A(0), A(y)\}$ = A(y)Hence it completes the proof.

Theorem 3.6. Let A be a multi-fuzzy BG-ideal of X. If the inequality $x * y \le z$ holds in X, then $A(x) \ge \min \{ A(y), A(z) \}$ for all $x, y, z \in X$. **Proof:** Assume the inequality $x * y \le z$ holds in X. Then (x * y) * z = 0. $A(x) \ge \min \{ A(x * y), A(y) \}$ $\ge \min \{ \min \{ A((x * y) * z), A(z) \}, A(y) \}$ $= \min \{ \min \{ A(0), A(z) \}, A(y) \}$ $= \min \{ A(y), A(z) \}$

Definition 3.7. Let A be a multi-fuzzy set in a BG-algebra X. Then A is called multi-fuzzy closed ideal in X if it satisfies the following conditions :

i) $A(x) \ge \min \{ A(x * y), A(y) \}$

Multi-Fuzzy BG-ideals in BG-algebra

ii)
$$A(0 * x) \ge A(x)$$

Example 3.8. Consider a BG-algebra $X = \{0, 1, 2, 3\}$ with the following cayley table

*	0	1	2	3		
0	0	1	2	3		
1	1	0	1	1		
2	2	2	0	2		
3	3	3	3	0		
Table 2:						

Let $A : X \rightarrow I$ be a multi-fuzzy set defined by A(0) = A(1) = (0.6, 0.8) and A(2) = A(3) = (0.3, 0.4)Then A is multi-fuzzy closed ideal in X.

Theorem 3.9. Every multi-fuzzy closed ideal is a multi-fuzzy ideal in X. **Proof:** Let A be a multi-fuzzy closed ideal of X. It is enough to prove that $A(0) \ge A(x)$ Now, $A(0) \ge \min \{ A(0 * x), A(x) \}$

 $\geq \min \{ A(x), A(x) \}$ = A(x)

Remark 3.3. The converse of the above theorem is not true in general.

Theorem 3.10. Every multi-fuzzy closed ideal of a BG-algebra is a multi-fuzzy BG-subalgebra of X.

Proof : Let A be a multi-fuzzy closed ideal of X.

Now, $A(x * y) \ge \min \{ A((x * y) * (0 * y)), A(0 * y) \}$ $= \min \{ A(x), A(0 * y) \}$ $\ge \min \{ A(x), A(y) \}$

Hence the proof.

Theorem 3.11. If A is a multi-fuzzy BG-ideal in X, then the set U(A; t) is a BG-ideal in X for $t = (t_1, t_2, ..., t_k)$ where $t_i \in [0, 1]$, for all i **Proof :** Let A be a multi-fuzzy BG-ideal in X.

 $\begin{array}{lll} i) & \text{Since } A(0) \geq A(x) \geq t \ , \ 0 \in U(A \ ; \ t) \\ ii) & \text{Let } x \ast y \in U(A \ ; \ t) \ \text{and } y \in U(A \ ; \ t) \\ & \text{Then } A(x \ast y \) \geq t \ \text{and } A(y) \geq t \\ & \text{Now, } A(x) \geq \min \left\{ \begin{array}{l} A(x \ast y \) \ , \ A(y) \end{array} \right\} \\ & \geq \min \left\{ \begin{array}{l} t \ , \ t \end{array} \right\} \\ & = t \\ & \text{This implies that } x \in U(A \ ; \ t). \\ iii). & \text{Let } x \in U(A \ ; \ t) \ \text{and } y \in X \\ & \text{Choose } y \ in X \ \text{such that } A(y) \geq t \end{array}$

 $A(x * y) \geq \min \{A(x), A(y)\}$

 $\geq \min \{ t, t \}$ = t This implies that $x * y \in U(A; t)$ Hence U(A; t) is a BG-ideal in X.

Theorem 3.12. If X be a BG-algebra and U(A;t) for $t = (t_1, t_2, \dots, t_k)$ where $t_i \in [0,1]$, for all i is a BG-ideal in X, then A is a multi-fuzzy BG-ideal in X. **Proof:** Let U(A; t) be a BG-ideal in X. Let x, $y \in U(A; t)$ Then $A(x) \ge t$ and $A(y) \ge t$ i). Let A(x) = r and A(y) = s and such that $r \le s$ where $r = (r_1, r_2, \dots, r_k)$ and $s = (s_1, r_2, \dots, r_k)$ $s_2...,s_k$) for r_i and $s_i \in [0,1]$ for all i. Since A(x) = r, $x \in U(A; r)$ $x \in U(A; r)$ and $y \in X$ implies $x * y \in U(A; r)$ That is $A(x) \ge r$ = $\min \{ r, s \}$ = min { A(x) , A(y) } ii). A(0) = A(x * x) $\geq \min \{ A(x), A(x) \}$ by (i) = A(x)A(x) = A((x * y) * (0 * y))iii). $\geq \min \{ A(x * y), A(0 * y) \},$ by (i) $\geq \min \{ A(x * y), \min \{ A(0), A(y) \} \}$ $= \min \{ A(x * y), A(y) \}$

Hence A is a multi-fuzzy BG-ideal in X.

4. Homomorphism of multi-fuzzy BG-ideals

In this section, the properties of multi-fuzzy BG-ideals are discussed under homomorphism.

Definition 4.1. Let $f : X \to Y$ be a mapping of BG-algebra and A be a multi-fuzzy set of Y then $f^{-1}(A)$ is the pre-image of A under f if $f^{-1}(A) = A(f(x)) \forall x \in X$.

Theorem 4.2. Let $f : X \to Y$ be a homomorphism of BG-algebra. If A is a multi-fuzzy BG-ideal of Y, then $f^{-1}(A)$ is a multi-fuzzy BG-ideal of X.

Proof : For any $x \in X$,

i)
$$f^{-1}(A)(x) = A(f(x))$$

 $\leq A(0)$
 $= A(f(0))$
 $= f^{-1}(A)(0)$
ii) $f^{-1}(A)(x) = A(f(x))$
 $\geq \min \{ A(f(x)) * A(f(y)) , A(f(y)) \}$

Multi-Fuzzy BG-ideals in BG-algebra

$$= \min \{ A(f(x * y), A(f(y)) \} \\= \min \{ f^{-1}(A) (x * y), f^{-1}(A)(y) \} \\iii) f^{-1}(A) (x * y) = A(f(x * y)) = A(f(x) * f(y)) \\\geq \min \{ A(f(x), A(f(y)) \} \\= \min \{ f^{-1}(A) (x), f^{-1}(A)(y) \} \\$$
Hence the proof.

Theorem 4.3. Let $f : X \to Y$ be an epimorphism of a BG-algebra. If $f^{-1}(A)$ is a multi-fuzzy ideal in X then A is a multi-fuzzy ideal in Y.

Proof :

i) Let $y \in Y$ there exists $x \in X$ such that f(x) = yA(y)= A(f(x)) $f^{-1}(A)(x)$ = \leq f⁻¹(A)(0) A(f(0))= = A(0) That is $A(0) \ge A(y)$ ii) Let x , $y \in Y$ there exists a , $b \in X$ such that f(a) = x , f(b) = yA(x)= A(f(a)) $f^{-1}(A)(a)$ = $\geq \min \{ f^{-1}(A)(a * b), f^{-1}(A)(b) \}$ $= \min \{ A(f(a * b)), A(f(b)) \}$ min { A(f(a) * f(b)), A(f(b)) } = $\min \{ A(x * y), A(y) \}$ = A(x * y)iii). = A(f(a) * f(b)) A(f(a * b))= $= f^{-1}(A) (a * b)$ $\geq \min \{ f^{-1}(A)(a), f^{-1}(A)(b) \}$ min { A(f(a)) , A(f(b)) } = = min { A(x) , A(y) } Hence A is a multi-fuzzy BG-ideal in Y.

5. Conclusion

In this paper, we introduced the concept of multi-fuzzy BG-ideals in BG-algebra and discussed some of its properties based on level sets and also presented some results under homomorphism.

Acknowledgement. Authors would like to express their sincere thanks to all our friends for their help to make this paper as a successful one.

REFERENCES

1. Y.Imai and K.Iseki, On axiom system of propositional calculi, *XIV Proc, Japan Academy*, 42 (1966) 19-22.

- 2. K.Iseki and S.Tanaka, An introduction to theory of BCK-algebras, *Math. Japonica*, 23 (1978) 1-26.
- 3. K.Iseki, On BCI-algebras, Math. Seminor Notes, 8 (1980) 125-130.
- 4. J.Neggers and H.S.Kim, On B-algebras, *Math. Vesnik*, 54 (2002) 21-29.
- 5. J.Neggers and H.S.Kim, On d-algebras, Math. Slovaca, 49(1999) 19-26.
- 6. C.B.Kim and H.S.Kim, On BG-algebras, *Demonstratio Mathematica*, 41 (2008) 497-505.
- 7. S.S.Ahn and D.Lee, Fuzzy subalgebras of BG algebras, *Commun. Korean Math. Soc*, 19(2) (2004) 243-251.
- 8. L.A.Zadeh, Fuzzy sets, Information and Control, 8 (1965) 338-353.
- 9. S.Sabu and T.V.Ramakrishnan, Multi-fuzzy sets, *International Mathematical Forum*, 50 (2010) 2471-2476.
- 10. S.Sabu and T.V.Ramakrishnan, Multi-fuzzy topology, *International Journal of Applied Mathematics*, 24(1) (2011) 117-129.
- 11. R.Muthuraj, M.Sridharan and P.M.Sitharselvam, Fuzzy BG-ideals in BG-algebra, *International Journal of Computer Applications*, 2(1) (2010) 26-30.
- 12. R.Muthuraj and S.Devi, Multi-fuzzy subalgebras of BG-Algebra and its level subalgebras, *International Journal of Applied Mathematical Sciences*, 9(1) (2016) 113-120.
- 13. T.Senapati, M.Bhowmik and M.Pal, Intuitionistic fuzzifications of ideals in BGalgebras, *Mathematica Aeterna*, 2 (9) (2012) 761-778.
- 14. T.Senapati, M.Bhowmik and M.Pal, Fuzzy closed ideals of B-algebras, *International Journal of Computer Science Engineering and Technology*, 1 (10) (2011) 669-673.
- 15. T.Senapati, M.Bhowmik and M.Pal, Fuzzy B-subalgebras of B-algebra with respect to t-norm, *Journal of Fuzzy Set Valued Analysis*, (2012) (2012).
- 16. C.Jana, T.Senapati, M.Bhowmik and M.Pal, On intuitionistic fuzzy G-subalgebras of G-algebras, *Fuzzy Information and Engineering*, 7 (2) (2015) 195-209.
- 17. T.Bej and M.Pal, Doubt Atanassov's intuitionistic fuzzy Sub-implicative ideals in BCIalgebras, International Journal of Computational Intelligence Systems, 8 (2) (2015) 240-249.