On K Indices of Graphs

V.R.Kulli
Department of Mathematics
Gulbarga University, Gulbarga 585106, India
e-mail : vrkulli@gmail.com

Received 22 March 2016; accepted 31 March 2016

Abstract

In this paper, we introduce the first and second K indices of a graph. The first K index is defined as the sum of squares of the sum of the edge degrees of adjacent edges. The second K index is defined as the sum of the product of squares of the edge degrees of the adjacent edges. In this paper, some mathematical properties of the first K index of a graph are presented. Also some bounds for the first K index of a graph are established.

Keywords: reformulated Zagreb indices, K^{*} edge index, first K index, second K index.

AMS Mathematics Subject Classification (2010): 05C78

1. Introduction

Let G be a simple graph with n vertices and m edges with vertex set $V(G)$ and edge set $E(G)$. A molecular graph is a simple graph such that its vertices correspond to the atoms and the edges to the bonds. Chemical graph theory is a branch of mathematical chemistry which has an important effect on the development of the chemical sciences.

In Chemical Science, the physico-chemical properties of chemical compounds are often modeled by means of molecular graph based structure descriptors, which are also referred to as topological indices, see [1].

The degree $d_{G}(v)$ of a vertex v is the number of vertices adjacent to v. The edge connecting the vertices u and v will be denoted by $u v$. Let $d_{G}(e)$ denote the degree of an edge e in G, which is defined by $d_{G}(e)=d_{G}(u)+d_{G}(v)-2$ with $e=u v, e \sim f$ means that the edges e and f are adjacent. The line graph $L(G)$ of a graph G is the graph whose vertex set corresponds to the edges of G such that two vertices of $L(G)$ are adjacent if the corresponding edges of G are adjacent.

The first and second Zagreb indices of a graph G are defined as

$$
M_{1}(G)=\sum_{u \in V(G)} d_{G}(u)^{2} \text { and } M_{2}(G)=\sum_{u v \in E(G)} d_{G}(u) d_{G}(v) .
$$

These indices were introduced by Gutman et al. in [1].
In fact, one can rewrite the first Zagreb index as

$$
M_{1}(G)=\sum_{u v \in E(G)}\left[d_{G}(u)+d_{G}(v)\right]
$$

These indices in Chemical graph theory were studied, for example, in [2, 3, 4, 5, 6]. The reformulated first and second Zagreb indices of a graph G are defined as
V.R.Kulli

$$
E M_{1}(G)=\sum_{e \in E(G)} d_{G}(e)^{2} \text { and } E M_{2}(G)=\sum_{e \sim f \in E(G)} d_{G}(e) d_{G}(f) .
$$

These indices were introduced by Milićević et al. in [7]. The reformulated first and second Zagreb indices in chemical graph theory were studied, for example, in [8, 9, 10].

The K^{*}-edge index of a graph G is defined as

$$
K_{e}^{*}(G)=\sum_{e \sim f \in E(G)}\left[d_{G}(e)^{2}+d_{G}(f)^{2}\right] .
$$

The K^{*}-edge index of G was introduced by Kulli in [11].
In this paper, we introduce the K indices of a graph and some properties of the K indices are obtained.

2. First and second K indices

We define K indices of a graph is terms of edge degrees where the degree of an edge e is defined as $d(e)=d(u)+d(v)-2$ with $e=u v$.

Definition 1. The first and second K indices (called as Kulli indices) of a graph G are defined as

$$
\begin{aligned}
K^{1}(G) & =\sum_{e \sim f \in E(G)}[d(e)+d(f)]^{2} \\
K^{2}(G) & =\sum_{e \sim f \in E(G)}[d(e) d(f)]^{2}
\end{aligned}
$$

where $e \sim f$ means that the edges e and f are adjacent .

3. Properties of first K index

Theorem 2. Let G be a simple graph. Then

$$
\begin{equation*}
K^{1}(G)=K_{e}^{*}(G)+2 E M_{2}(G) . \tag{1}
\end{equation*}
$$

Proof: By the definition of the K^{1} index, we have

$$
\begin{aligned}
K^{1}(G) & =\sum_{e \sim f \in E(G)}\left[d_{G}(e)+d_{G}(f)\right]^{2} \\
& =\sum_{e \sim f \in E(G)}\left[d_{G}(e)^{2}+d_{G}(f)^{2}+2 d_{G}(e) d_{G}(f)\right] \\
& =\sum_{e \sim f \in E(G)}\left[d_{G}(e)^{2}+d_{G}(f)^{2}\right]+2 \sum_{e \sim f \in E(G)}\left[d_{G}(e) d_{G}(f)\right] .
\end{aligned}
$$

Therefore $K^{1}(G)=K_{e}^{*}(G)+2 E M_{2}(G)$.
Corollary 2.1. Let G be a simple graph. Then

$$
E M_{2}(G)=\frac{1}{2}\left(K^{1}(G)-K_{e}^{*}(G)\right) .
$$

4. Lower Bounds for $\boldsymbol{K}^{1}(\mathbf{G})$

In this section, we give two lower bounds for $K^{1}(G)$.
Ilić and Zhou in [9] obtained the following inequality.

On K Indices of Graphs

Theorem 3. Let G be a simple graph with n vertices and m edges. Then

$$
\begin{equation*}
E M_{2}(G) \geq E M_{1}(G)-\frac{1}{2} M_{1}(G)+m \tag{2}
\end{equation*}
$$

We establish a lower bound for $K^{1}(G)$.

Theorem 4. Let G be a simple graph with n vertices and m edges. Then

$$
\begin{equation*}
K^{1}(G) \geq K_{e}^{*}(G)+2 E M_{1}(G)-M_{1}(G)+2 m \tag{3}
\end{equation*}
$$

Furthermore, equality holds if and only if each component of G is P_{3}.
Proof: Using (2) in (1), we obtain the desired result.
In [9], Ilić and Zhou gave the following inequality.
Theorem 5. Let G be a simple graph with n vertices and m edges. Then

$$
\begin{equation*}
E M_{2}(G) \geq \frac{1}{2 m^{2}}\left(M_{1}(G)-2 m\right)^{3} \tag{4}
\end{equation*}
$$

with equality if and only if $L(G)$ is regular.
We now obtain another lower bound for $K^{1}(G)$.
Theorem 6. Let G be a simple graph with n vertices and m edges. Then

$$
\begin{equation*}
K^{1}(G) \geq K_{e}^{*}(G)+\frac{1}{m^{2}}\left(M_{1}(G)-2 m\right)^{3} . \tag{5}
\end{equation*}
$$

Furthermore, equality holds if and only if $L(G)$ is regular.
Proof: Using (4) in (1), we find the desired result. Obviously, equality holds in (5) if and only if $L(G)$ is regular.
5. Upper bound for $K^{\mathbf{1}}(\boldsymbol{G})$

In this section, we give an upper bound for $K^{1}(G)$.
In [8], De proved the following inequality.
Theorem 7. Let G be simple connected graph with n vertices and m edges. Then

$$
\begin{equation*}
E M_{2}(G) \leq \frac{1}{2}\left(M_{1}(G)-2 m\right)^{2}-(m-1)(\delta-1)\left(M_{1}(G)-2 m\right)+\frac{1}{2}(2 \delta-3) E M_{1}(G) \tag{6}
\end{equation*}
$$

with equality holds if and only if G is regular.
We now give an upper bound for $K^{1}(G)$.
Theorem 8. Let G be a simple connected graph with n vertices and $m \geq 2$ edges. Then

$$
\begin{equation*}
K^{1}(G) \leq K_{e}^{*}(G)+\left(M_{1}(G)-2 m\right)^{2}-2(m-1)(\delta-1)\left(M_{1}(G)-2 m\right)+(2 \delta-3) E M_{1}(G) \tag{7}
\end{equation*}
$$

Furthermore, equality in (7) holds if and only if G is regular.
Proof: From (1) and (6), we obtain the inequality (7). Obviously equality in (7) holds if G is regular.
6. Other bounds for $\boldsymbol{K}^{1}(G)$

V.R.Kulli

In [8], De obtained the following result.
Theorem 9. Let G be a simple connected graph with n vertices and m edges. Then

$$
\begin{equation*}
2\left(M_{1}(G)-2 m\right)(\delta-1)^{2} \leq E M_{2}(G) \leq 2\left(M_{1}(G)-2 m\right)(\Delta-1)^{2} . \tag{8}
\end{equation*}
$$

We now give lower and upper bounds for $K^{1}(G)$.
Theorem 10. Let G be a simple connected graph with n vertices and m edges. Then

$$
\begin{equation*}
K_{e}^{*}(G)+4\left(M_{1}(G)-2 m\right)(\delta-1)^{2} \leq K^{1}(G) \leq K_{e}^{*}(G)+4\left(M_{1}(G)-2 m\right)(\Delta-1)^{2} . \tag{9}
\end{equation*}
$$

Furthermore, equality holds if and only if G is regular.
Proof: From (8), we have

$$
2\left(M_{1}(G)-2 m\right)(\delta-1)^{2} \leq E M_{2}(G) \leq 2\left(M_{1}(G)-2 m\right)(\Delta-1)^{2} .
$$

Therefore
$K_{e}^{*}(G)+4\left(M_{1}(G)-2 m\right)(\delta-1)^{2} \leq K_{e}^{*}(G)+2 E M_{2}(G) \leq K_{e}^{*}(G)+4\left(M_{1}(G)-2 m\right)+(\Delta-1)^{2}$.
Thus $K_{e}^{*}(G)+4\left(M_{1}(G)-2 m\right)(\delta-1)^{2} \leq K^{1}(G) \leq K_{e}^{*}(G)+4\left(M_{1}(G)-2 m\right)+(\Delta-1)^{2}$.
Obviously in (9), equality holds if G is regular.
In [8], De obtained the following result.
Theorem 11. Let G be a simple connected graph with n vertices and m edges. Then

$$
\begin{equation*}
(\delta-1) E M_{1}(G) \leq E M_{2}(G) \leq(\Delta-1) E M_{1}(G) \tag{10}
\end{equation*}
$$

with equality holds if and only if G is regular.
We now obtain another lower and upper bounds for $K^{l}(G)$.
Theorem 12. Let G be a simple graph with n vertices and m vertices. Then

$$
\begin{equation*}
K_{e}^{*}(G)+2(\delta-1) E M_{1}(G) \leq K^{1}(G) \leq K_{e}^{*}(G)+2(\Delta-1) E M_{1}(G) . \tag{11}
\end{equation*}
$$

Furthermore, equality holds if and only if G is regular.
Proof: From (10), we have

$$
(\delta-1) E M_{1}(G) \leq E M_{2}(G) \leq(\Delta-1) E M_{1}(G) .
$$

Therefore $K_{e}^{*}(G)+2(\delta-1) E M_{1}(G) \leq K_{e}^{*}(G)+2 E M_{2}(G) \leq K_{e}^{*}(G)+2(\Delta-1) E M_{1}(G)$.
Thus $K_{e}^{*}(G)+2(\delta-1) E M_{1}(G) \leq K^{1}(G) \leq K_{e}^{*}(G)+2(\Delta-1) E M_{1}(G)$.
Obviously equality holds when G is regular.

REFERENCES

1. I.Gutman and N.Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17, (1972) 535-538.
2. B.Furtula, I.Gutman and S.Ediz, On difference of Zagreb indices, Discrete Appl. Math. 178, (2014) 83-88.
3. I.Gutman, B.Furtula, Z.K.Vukićević and G.Popivoda, On Zagreb indices and coindices, MATCH Commun. Math. Comput. Chem. 74, (2015) 5-16.

On K Indices of Graphs

4. S.M.Hosamani and B.Basavanagoud, New upper bounds for the first Zagreb index, MATCH Commun. Math. Comput. Chem. 74, (2015) 97-101.
5. M.H.Khalifeh, H.Yousefi-Azari and A.R.Ashrafi, The first and second Zagreb indices of some graph operations, Discrete Appl. Math. 157, (2009) 804-811.
6. B.Zhou and I.Gutman, Further properties of Zagreb indices, MATCH Commun. Math. Comput. Chem. 54, (2005) 233-239.
7. A.Milićević, S.Nikolić and N.Trinajstić, On reformulated Zagreb indices, Molecular Diversity, 8, (2004) 393-399.
8. N.De, Some bounds of reformulated Zagreb indices, Appl. Mathematical Sciences, 6(101), (2012) 5005-5012.
9. A.Ilić and B.Zhou, On reformulated Zagreb indices, Discrete Appl. Math. 160, (2012) 204-209.
10. B.Zhou and N.Trinajstić, Some properties of the reformulated Zagreb indices, J. Math. Chem. 48, (2010) 714-719.
11. V.R.Kulli, On K-edge index and coindex of graphs, submitted.
