Intern. J. Fuzzy Mathematical Archive Vol. 10, No. 2, 2016, 179-184 ISSN: 2320 – 3242 (P), 2320 – 3250 (online) Published on 22 June 2016 www.researchmathsci.org

International Journal of **Fuzzy Mathematical Archive**

On Quotient BF-algebras via Interval-valued Fuzzy Ideals

D. Ramesh¹, P. Hema Sundari² and B. Satyanarayana³

¹Department of Science & Humanities, MVR of Engineering & Technology Paritala, Krishna (Dt), A.P., India E. mail: <u>ram.fuzzy@gamil.com</u> ^{2,3}Department of Mathematics, Acharya Nagarjuna University Nagarjuna Nagar-522 510, Andhra Pradesh, India E.mail: <u>drbsn63@yahoo.co.in</u>

Received 15 May 2016; accepted 13 June 2016

Abstract. The present paper gives a new construction of a quotient BF-algebra $X_{\tilde{\mu}}$ by a interval-valued fuzzy ideal $\tilde{\mu}$ in X and establishes that interval-valued fuzzy homomorphism, we show that if $\tilde{\mu}$ is a interval-valued fuzzy ideal of X, then $X_{\tilde{\mu}}$ is a BF-algebra X if and only if $\tilde{\mu}$ is a interval-valued fuzzy ideal of X and investigate some of its properties.

Keywords: BF-algebras, interval-valued fuzzy set, interval-valued fuzzy homomorphism.

AMS Mathematics Subject Classification (2010): 06F35, 03E72, 03G25

1. Introduction and preliminaries

The concept of fuzzy set was introduced by Zadeh [13]. Recently, Walendzik [12] defined BF-algebras. The notion of interval-valued fuzzy set was first introduced by Zadeh [14] as an extension of fuzzy sets. In [3], Liu and Meng constructed quotient BCI (BCK)-algebra via fuzzy ideals. In this paper we introduce the notion of quotient BF-algebra via interval-valued fuzzy ideals and investigate some interesting properties. By a BF-algebra we mean an algebra satisfying the axioms:

(1) x * x = 0,
(2) x * 0 = x,
(3) 0 * (x * y) = y * x for all x, y ∈ X
Throughout this paper, X is a BF-algebra.

Example 1.1. Let R be the set of real number and let A = (R, *, 0) be the algebra with the operation * defined by

D. Ramesh, P. Hema Sundari and B. Satyanarayana

$$\mathbf{x} * \mathbf{y} = \begin{cases} \mathbf{x}, \text{if } \mathbf{y} = \mathbf{0} \\ \mathbf{y}, \text{if } \mathbf{x} = \mathbf{0} \\ \mathbf{0}, \text{otherwise} \end{cases}$$

Definition 1.2. The subset I of X is said to be an ideal of X , if

(i) $0 \in I$ and (ii) $x * y \in I$ and $y \in I \implies x \in I$.

We now review some fuzzy logic concepts. A fuzzy set in X is a function $\mu : X \to [0,1]$. For fuzzy sets $\mu \in X$ and $s \in [0,1]$. The sets $U(\mu; t) = \{x \in X : \mu(x) \ge t\}$ is called upper t-level cut of μ .

Definition 1.3. [4] A fuzzy set in a set S is a function μ from S into [0,1].

Definition 1.4. [5] The fuzzy set μ in X is called a fuzzy subalgebra of X, if $\mu(x * y) \ge \min{\{\mu(x), \mu(y)\}}$, for all $x, y \in X$.

Definition 1.5. A fuzzy set μ of X is called a fuzzy ideal of X if (F1) $\mu(0) \ge \mu(x)$

(F2) $\mu(x) \ge \min\{\mu(x * y), \mu(y)\}$ for all $x, y \in X$.

By interval number D we mean an interval $[a^-, a^+]$ where $0 \le a^- \le a^+ \le 1$. For interval numbers $D_1 = [a_1^-, b_1^+]$, $D_2 = [a_2^-, b_2^+]$. We define

and put

- $D_1 \leq D_2 \Leftrightarrow a_1^- \leq a_2^-$ and $b_1^+ \leq b_2^+$
- $D_1 = D_2 \Leftrightarrow a_1^- = a_2^- \text{ and } b_1^+ = b_2^+,$
- $D_1 < D_2 \Leftrightarrow D_1 \le D_2 \text{ and } D_1 \ne D_2$
- $mD = m[a_1^-, b_1^+] = [ma_1^-, mb_1^+]$, where $0 \le m \le 1$.

It is obvious that $(D[0,1], \leq, \lor, \land)$ is a complete lattice with [0,0] as its least element and [1,1] as its greatest element. We now use D[0,1] to denote the set of all closed sub intervals of the interval [0,1].

For interval numbers $D_1 = [a_1^-, b_1^+], D_2 = [a_2^-, b_2^+] \in D[0, 1]$ we define

On Quotient BF-algebras via Interval-valued Fuzzy Ideals

•
$$D_1 + D_2 = [a_1^- + a_2^- - a_1^- a_2^-, b_1^+ + b_2^+ - b_1^+ b_2^+]$$

Let L be a given nonempty set. An interval-valued fuzzy set B on L is defined by $B = \{(x, [\mu_B^-(x), \mu_B^+(x)] : x \in L\}$, Where $\mu_B^-(x)$ and $\mu_B^+(x)$ are fuzzy sets of L such that $\mu_B^-(x) \le \mu_B^+(x)$ for all $x \in L$. Let $\tilde{\mu}_B(x) = [\mu_B^-(x), \mu_B^+(x)]$, then $B = \{(x, \tilde{\mu}_B(x)) : x \in L\}$ Where $\tilde{\mu}_B : L \to D[0, 1]$

Definition 1.6. The Interval-valued fuzzy set $\tilde{\mu}$ in X is called interval-valued fuzzy subalgebra of X, if $\tilde{\mu}(x * y) \ge \min\{\tilde{\mu}(x), \tilde{\mu}(y)\}$, for all $x, y \in X$.

Definition 1.7. An interval-valued fuzzy set $\tilde{\mu}$ is called interval-valued fuzzy ideal of BF-algebra X if satisfies the following inequality (i-v F1) $\tilde{\mu}(0) \ge \tilde{\mu}(x)$ (i-v F2) $\tilde{\mu}(x) \ge \min{\{\tilde{\mu}(x * y), \tilde{\mu}(y)\}}$, for all x, y, z \in X.

Example 1.8. Consider a BF-algebra $X = \{0, a, b, c\}$ with following table

*	0	а	b	с
0	0	а	b	с
а	а	0	с	b
b	b	с	0	а
с	с	b	а	0

Let A be an interval-valued fuzzy set in X defined by $\tilde{\mu}(0) = \tilde{\mu}(a) = [0.6, 0.7]$ and $\tilde{\mu}(b) = \tilde{\mu}(c) = [0.2, 0.3]$, it is easy to verify that A is an interval-valued fuzzy ideal of X.

Proposition 1.9. Every interval-valued fuzzy ideal $\tilde{\mu}$ of X is order reversing.

Proposition 1.10. Let $\tilde{\mu}$ be a interval-valued fuzzy ideal of X. Then $x * y \le z$ implies $\tilde{\mu}(x) \ge \min{\{\tilde{\mu}(y), \tilde{\mu}(z)\}}$ for all $x, y, z \in X$.

2. Quotient BF-algebras induced by interval-valued fuzzy ideals

Let $\tilde{\mu}$ be a interval-valued fuzzy ideal of X. For any x, $y \in X$, define relation ~ on X by $x \sim y$ if and only if $\tilde{\mu}(x * y) = \tilde{\mu}(0)$ and $\tilde{\mu}(y * x) = \tilde{\mu}(0)$.

Lemma 2.1: ~ is an equivalence relation of X. Proof. (i) For any $x \in X$, we have $\tilde{\mu}(x * x) = \tilde{\mu}(0)$. Hence $x \sim x$. D. Ramesh, P. Hema Sundari and B. Satyanarayana

(ii) For any x, y∈ X, if x ~ y, then μ̃(x * y) = μ̃(0) and μ̃(y * x) = μ̃(0). It means that y ~ x.
(iii) For any x, y,z∈ X, if x ~ y and y ~ z, then μ̃(x * y) = μ̃(y * x) = μ̃(y * z) = μ̃(z * y) = μ̃(0)
Since (x * z) * (x * y) ≤ y * z and (z * x) * (z * y) ≤ y * x, by proposition 1.10 we have μ̃(x * z) ≥ min{μ̃(x * y), μ̃(y * z)} = μ̃(0) and μ̃(z * x) ≥ min{μ̃(x * y), μ̃(y * x)} = μ̃(0), and so μ̃(x * z) = μ̃(0) and μ̃(z * x) = μ̃(0). Hence x ~ z. The proof is complete.

Lemma 2.2. $x \sim y$ implies $x \ast z \sim y \ast z$ and $z \ast x \sim z \ast y$ for all $x, y, z \in X$. **Proof:** If $x \sim y$, then $\tilde{\mu}(x \ast y) = \tilde{\mu}(y \ast x) = \tilde{\mu}(0)$. Since $(x \ast z) \ast (y \ast z) \le x \ast y$ and $(y \ast z) \ast (x \ast z) \le y \ast x$, by Proposition 1.9 we have $\tilde{\mu}((x \ast z) \ast (y \ast z)) \ge \tilde{\mu}(x \ast y) = \tilde{\mu}(0)$ and $\tilde{\mu}((y \ast z) \ast (x \ast z)) \ge \tilde{\mu}(y \ast x) = \tilde{\mu}(0)$ and so $\tilde{\mu}((x \ast z) \ast (y \ast z)) = \tilde{\mu}(0)$ and $\tilde{\mu}((y \ast z) \ast (x \ast z)) \ge \tilde{\mu}(0)$. Thus $x \ast z \sim y \ast z$. Similarly, we can prove that $z \ast x \sim z \ast y$. The proof is finished.

Lemma 2.3. $x \sim y$ and $u \sim v$ imply $x \ast u \sim y \ast v$ for all x, y, u, $v \in X$. **Proof:** If $x \sim y$ and $u \sim v$ by Lemma 2.2 $x \ast u \sim y \ast u$ and $x \ast v \sim y \ast v$. Using the transitivity of \sim , we get $x \ast u \sim y \ast v$. This completes the proof.

Summarizing the above lemmas we have following.

Theorem 2.4. ~ is a congruence relation on X.

Definition 2.5. We write $\tilde{\mu}_x = \{y \in X / x * y\}$ the equivalence class containing x and $X/\tilde{\mu} = \{\tilde{\mu}_x / x \in X\}$ is the set of all equivalence classes of X. A binary operation * on $X/\tilde{\mu}$ is defined by $\tilde{\mu}_x * \tilde{\mu}_y = \tilde{\mu}_{x*y}$.

Theorem 2.6. If $\tilde{\mu}$ is interval-valued fuzzy ideal of a BF-algebra X, then quotient algebra $(\frac{X}{\mu}; *, \tilde{\mu}_0)$ is BF-algebra.

Proof: For any $\tilde{\mu}_x, \tilde{\mu}_y \in X/\tilde{\mu}$, we have (i) $\tilde{\mu}_x * \tilde{\mu}_x = \tilde{\mu}_{x*x} = \tilde{\mu}_0$, (ii) $\tilde{\mu}_x * \tilde{\mu}_0 = \tilde{\mu}_{x*0} = \tilde{\mu}_x$, $\tilde{\mu}_0 * (\tilde{\mu}_x * \tilde{\mu}_y) = \tilde{\mu}_{0*(x*y)} = \tilde{\mu}_{y*x}, \forall x, y \in X.$, $(\tilde{\mu}_0 * \tilde{\mu}_x = \tilde{\mu}_{0*x} = \tilde{\mu}_0)$. On Quotient BF-algebras via Interval-valued Fuzzy Ideals

If $\tilde{\mu}_x * \tilde{\mu}_y = \tilde{\mu}_0$ and $\tilde{\mu}_y * \tilde{\mu}_x = \tilde{\mu}_0$, then $\tilde{\mu}_{x*y} = \tilde{\mu}_0$ and $\tilde{\mu}_{y*x} = \tilde{\mu}_0$ and so $\tilde{\mu}(x*y) = \tilde{\mu}(0) = \tilde{\mu}(y*x)$. Hence $x \sim y$. Then $\tilde{\mu}_x = \tilde{\mu}_y$. Thus we prove the theorem.

A mapping $f: X \to Y$ of BF-algebras is called a homomorphism if f(x * y) = f(x) * f(y) for all $x, y \in X$, f is called an epimorphism, if it is a surjective homomorphism, f is called a monomorphism if it is an injective homomorphism.

Proposition 2.6. Let $f: X \to Y$ be an epimorphism and \tilde{v} an interval-valued fuzzy ideal of Y. Then $\tilde{v} \circ f$ is a Interval-valued fuzzy ideal of X.

Theorem 2.7. (Fundamental theorem of interval-valued fuzzy homomorphism) Let X and Y be BF-algebra, $f: X \to Y$ an epimorphism and \tilde{v} an interval-valued fuzzy ideal of Y. Then $\frac{X}{\tilde{v} \circ f} \cong \frac{Y}{\tilde{v}}$.

Proof: By using theorem 2.5 and proposition 2.6, $X_{\widetilde{V} \circ f}$ and $Y_{\widetilde{V}}$ are BF-algebras. Define $\eta : X_{\widetilde{V} \circ f} \to Y_{\widetilde{V}}$ by $\eta((\widetilde{v} \circ f)_x) = \widetilde{v}_{f(x)}$ (i) $(\widetilde{v} \circ f)_x = (\widetilde{v} \circ f)_y \Rightarrow (\widetilde{v} \circ f)(x * y) = (\widetilde{v} \circ f)(y * x) = (\widetilde{v} \circ f)(0)$ $\Rightarrow \widetilde{v}(f(x) * f(y)) = \widetilde{v}(f(y) * f(x)) = \widetilde{v}(0')$, where 0' is the zero element of $Y \Rightarrow \widetilde{v}_{f(x)} = \widetilde{v}_{f(y)}$. Hence η is well-defind. (ii) $\eta((\widetilde{v} \circ f)_x * (\widetilde{v} \circ f)_y) = \eta((\widetilde{v} \circ f)_{x*y}) = \widetilde{v}_{f(x*y)} = \widetilde{v}_{f(x)*f(y)} = \widetilde{v}_{f(x)} * \widetilde{v}_{f(y)}$. $= \eta((\widetilde{v} \circ f)_x * (\widetilde{v} \circ f)_y)$. Hence η is a homomorphism. (iii) η is a monomorphism: $\widetilde{v}_{f(x)} = \widetilde{v}_{f(y)} \Rightarrow \widetilde{v}(f(x) * f(y)) = \widetilde{v}(f(y) * f(x)) = \widetilde{v}(0')$ $\Rightarrow (\widetilde{v} \circ f)(x * y) = (\widetilde{v} \circ f)(y * x) = (\widetilde{v} \circ f)(0) \Rightarrow (\widetilde{v} \circ f)_x = (\widetilde{v} \circ f)_y$. Hence $\frac{X}{\widetilde{v} \circ f} \cong \frac{Y}{\widetilde{v}}$ and the proof is complete.

Reviewing that the characteristic function of a subset I in X, we mean $\widetilde{\chi}_{I}(x) = \begin{cases} [1,1], \text{ if } x \in I \\ [0,0], \text{ otherwise.} \end{cases}$

In particular, $\widetilde{\chi}_{\{0\}}$ is called the zero interval-valued fuzzy ideal of X. If f is an epimorhism, it is easy to verify that $\widetilde{\chi}_{\{0\}} \circ f = \widetilde{\chi}_{\ker f}$ and $\frac{Y}{\widetilde{\chi}_{\{0\}}} \cong Y$. Applying theorem 2.7, we have the following

D. Ramesh, P. Hema Sundari and B. Satyanarayana

Corollary 2.8. Let X and Y be BF-algebras and $f : X \to Y$ an epimorphism. Then

$$\frac{X}{\widetilde{\chi}_{\ker f}} \cong Y \,.$$

REFERENCES

- 1. A.Borumand Soeid and M.A.Rezvani, On fuzzy BF-algebras, *International Mathematical Forum*, 4 (2009) 13-25.
- 2. Y.Imai, and K.Iseki, On axiom systems of propositional Calculi, XIV Proc. Japan Academy, 42 (1966) 19-22.
- 3. Y.L.Liu and J.Meng, Construction of quotient BCI (BCK)-algebras via a fuzzy ideal, *J. Appl. Math. & Comuting*, 10 (1-2) (2002) 51-62.
- 4. B.Satyanarayana, D.Ramesh, M.K.Vijaya Kumar and R.Durga Prasad, On fuzzy ideals in BF-algebras, *International J. of .Sci. & Engg. Appls.*, 4 (2010) 263-274.
- 5. B.Satyanarayana, M.V.Vijaya Kumar, D.Ramesh and R.Durga Prasad, Intervalvalued intuitionistic fuzzy BF-subalgebras, *Acta Cienceia Indica, XXXVIII M*, 4 (2012) 637-644.
- 6. T.Senapati, M.Bhowmik, M.Pal and B.Davvaz, Fuzzy translations of fuzzy H-ideals in BCK/BCI-algbras, *J. Indones. Math. Soc.*, 21(1) (2015) 45-48.
- 7. T.Senapati, M.Bhowmik and M.Pal, Interval-valued intuitionistic fuzzy BGsubalgebras, J. Uncert. Syst., 8(1) (2014), 22-30.
- 8. T.Senapati, M.Bhowmik and M.Pal, Interval-valued intuitionistic fuzzy closed ideals BG-algebras and their products, *Int. J. Fuzzy Logic Syst.*, 2(2) (2012) 27-44.
- 9. T.Senapati, M.Bhowmik and M.Pal, Fuzzy dot structure of BG-algebras, *Fuzzy Information and Engineering*, 6(3) (2014) 315-329.
- 10. T.Senapati, Bipolar fuzzy structure of BG-subalgebras, J. Fuzzy Math., 23(1) (2015), 209-220.
- 11. T.Senapati, M.Bhowmik and M.Pal, Triangular norm based fuzzy BG-algebras, *Afrika Math.*, 27(1-2) (2016) 187-199.
- 12. A. Walendziak, On BF-algebras, Math. Slovaca, 57(2) (2007), 11.
- 13. L.A.Zadeh, Fuzzy sets, Information Control, 8 (1965) 338-353.
- 14. L.A.Zadeh, The concept of a linguistic variable and its application to approximate reasoning, *Information Sciences*, 8 (1975) 199-249.