ISSN: 2320-3242 (P), 2320-3250 (online)
Fuzzy Mathematical
Published on 25 April 2016
www.researchmathsci.org
Archive

On K Edge Index and Coindex of Graphs

V.R.Kulli
Department of Mathematics
Gulbarga University, Gulbarga 585106, India
e-mail : vrkulli@gmail.com
Received 13 April 2016; accepted 22 April 2016

Abstract

The F-index of a graph is defined as the sum of the cubes of the vertex degrees of a graph. It is known that this index can enhance the physico-chemical applicability of Zagreb index. In this paper, we introduce a new invariant the K-edge index which is defined as the sum of the cubes of the edge degrees of a graph. Also, we introduce another new invariant the K-edge coindex. We initiate a study of these new invariants.

Keywords: Zagreb indices, reformulated Zagreb indices, K-edge index, K-edge coindex
AMS Mathematics Subject Classification (2010): 05C72

1. Introduction

Let $G=(V, E)$ be a simple graph with $|V|=n$ vertices and $|E|=m$ edges.
The degree of a vertex v, denoted by $d_{G}(v)$, is the number of vertices adjacent to v. The edge connecting the vertices u and v will be denoted by $u v$. Let \bar{G} be the complement of a graph G and $|E(\bar{G})|=\bar{m}=\frac{n(n-1)}{2}-m$ and $d_{\bar{G}}(u)=n-1-d_{G}(u)$ for $u \in V$.

A molecular graph is a simple graph such that its vertices correspond to the atoms and the edges to the bonds. Chemical graph theory is a branch of mathematical chemistry which has an important effect on the development of the chemical sciences.

In Chemical Science, the physico-chemical properties of chemical compounds are often modeled by means of molecular-graph-based structure- descriptors, which are also referred to as topological indices, see [1].

The first and second Zagreb indices are defined as

$$
M_{1}(G)=\sum_{u \in V(G)} d_{G}(u)^{2} \text { and } M_{2}(G)=\sum_{u v \in E(G)} d_{G}(u) d_{G}(v) \text {. }
$$

These indices were introduced by Gutman et al. in [1]. Also the K indices and K coindices were introduced in [2] and [3] respectively.

In fact, one can rewrite the first Zagreb index as

$$
M_{1}(G)=\sum_{u \cup E(G)}\left[d_{G}(u)+d_{G}(v)\right] .
$$

The forgotten topological index F_{1} is defined $[1,4]$ as

V.R.Kulli

$$
F_{1}(G)=\sum_{u \in V(G)} d_{G}(u)^{3}=\sum_{u v \in E(G)}\left[d_{G}(u)^{2}+d_{G}(v)^{2}\right] .
$$

The forgotten topological index was studied, for example, in [5].
The first and second reformulated Zagreb indices are defined as

$$
E M_{1}(G)=\sum_{c \in E(G)} d_{G}(e)^{2}, E M_{2}(G)=\sum_{e \sim f \in E(G)} d_{G}(e) d_{G}(f)
$$

where $d_{G}(e)$ denotes the degree of an edge e in G, which is defined by $d_{G}(e)=d_{G}(u)+$ $d_{G}(v)-2$ with $e=u v$ and $e \sim f$ means that the edges e and f are adjacent.
The reformulated Zagreb indices were introduced by Milićević et al. in [6] and were studied, for example, in [7, 8, 9, 10].

The first $K a$-index and the first $K a$-coindex of a graph G are defined as

$$
\begin{aligned}
& K a(G)=\sum_{u \cup E(G)}\left(d_{G}(u)+d_{G}(v)\right)^{a} \\
& \bar{K} a(G)=\sum_{u \cup E E(G)}\left(d_{G}(u)+d_{G}(v)\right)^{a} .
\end{aligned}
$$

These were introduced by Kulli in [11].
Terminology and notation not given here may be found in [12].

2. Some measures of irregularity

Definition 1. A graph whose all edge degrees are mutually equal is said to be edge regular.

We now define the irregular edge indices of a graph.
Definition 2. The first irregular edge index $I E_{1}(G)$ of a graph G is defined as

$$
I E_{1}(G)=\sum_{e \sim f \in E(G)}\left|d_{G}(e)-d_{G}(f)\right| .
$$

Definition 3. The second irregular edge index $I E_{2}(G)$ of a graph G is defined as

$$
I E_{2}(G)=\sum_{e \sim f \in E(G)}\left[d_{G}(e)-d_{G}(f)\right]^{2}
$$

Also we define the irregular edge coindices of a graph.
Definition 4. The first irregular edge coindex $\overline{I E}_{1}(G)$ of a graph G is defined as

$$
\overline{I E}_{1}(G)=\sum_{e+f \in E(G)}\left|d_{G}(e)-d_{G}(f)\right| .
$$

Definition 5. The second irregular edge coindex $\overline{I E}_{2}(G)$ of a graph G is defined as

$$
\overline{I E}_{2}(G)=\sum_{e+f \in E(G)}\left[d_{G}(e)-d_{G}(f)\right]^{2} .
$$

3. The K-edge index of a graph

We define the K-edge index of a graph.

Definition 6. The K-edge index of a graph G is defined as

$$
K_{e}(G)=\sum_{e \in E(G)} d_{G}(e)^{3}
$$

i.e. The K-edge index of a graph is the sum of the cubes of the edge degrees of a graph.

Definition 7. The K^{*}-edge index of a graph G is defined as

$$
K_{e}^{*}(G)=\sum_{e \sim f \in E(G)}\left[d_{G}(e)^{2}+d_{G}(f)^{2}\right]
$$

We now define the K-edge coindex of a graph.
Definition 8. The K-edge coindex of a graph G is defined as

$$
\bar{K}_{e}(G)=\sum_{e+f \in E(G)}\left[d_{G}(e)^{2}+d_{G}(f)^{2}\right] .
$$

Example 9. Consider methylcyclohexane and its molecular graph G, see Figure 1.

Figure 1: Methylcyclohexane
The values of the K-edge index of G and the K^{*}-edge index of G are $K_{e}(G)=94$ and $K_{e}^{*}(G)=94$.

Example 10. Consider ethylcyclopropane and its molecular graph G, see Figure 2.

Figure 2:
The values of the K-edge index of G and the K^{*}-edge index of G are $K_{e}(G)=90$ and $K_{e}^{*}(G)=90$.

Now we have the following conjecture.
Conjecture 11. For any graph $G, K_{e}(G)=K_{e}^{*}(G)$.

Theorem 12. Let G be a graph with n vertices and m edges. Then

$$
K_{e}(G)=K_{3}(G)-6 H M_{1}(G)+12 M_{1}(G)-8 m .
$$

Proof: By definition K-edge index, we have

$$
\begin{aligned}
K_{e}(G) & =\sum_{e \in E(G)} d_{G}(e)^{3} \\
& =\sum_{e \in E(G)}\left[d_{G}(u)+d_{G}(v)-2\right]^{3} \\
& =\sum_{e \in E(G)}\left[\left\{d_{G}(u)+d_{G}(v)\right\}^{3}-6\left\{d_{G}(u)+d_{G}(v)\right\}^{2}+12\left\{d_{G}(u)+d_{G}(v)\right\}-8\right] \\
& =\sum_{e \in E(G)}\left[d_{G}(u)+d_{G}(v)\right]^{3}-6 \sum_{e \in E(G)}\left[d_{G}(u)+d_{G}(v)\right]+12 \sum_{e \in E(G)}\left[d_{G}(u)+d_{G}(v)\right]-8 \\
& =\sum_{e \in E(G)}\left[d_{G}(u)+d_{G}(v)\right]^{3}-6 H M_{1}(G)+12 M_{1}(G)-8 m \\
& =K_{3}(G)-6 H M_{1}(G)+12 M_{1}(G)-8 m .
\end{aligned}
$$

Theorem 13. Let G be a graph with n vertices and m edges. Let \bar{G} be the complement of G. Then

$$
K_{e}(\bar{G})=8(n-2)^{3} \bar{m}-12(n-2)^{2} \bar{M}_{1}(G)+6(n-2) \overline{H M}_{1}(G)-\bar{K}_{3}(G) .
$$

Proof: If the degree of a vertex u in G is $d_{G}(u)$, then the degree of u in \bar{G} is $n-1-d_{G}(u)$. If $e=u v$ is an edge of G, then the degree of an edge e in \bar{G} is

$$
n-1-d_{G}(u)+n-1-d_{G}(v)-2 \text { or } 2(n-2)-\left[d_{G}(u)+d_{G}(v)\right] .
$$

Therefore

$$
\begin{aligned}
& K_{e}(\bar{G})=\sum_{e \in E(\bar{G})} d_{\bar{G}}(e)^{3} \\
& =\sum_{e \in E(\bar{G})}\left[2(n-2)-\left\{d_{G}(u)+d_{G}(v)\right\}\right]^{3} \\
& =\sum_{\epsilon \in E(\bar{G}}\left[2^{3}(n-2)^{3}-3.2^{2}(n-2)^{2}\left\{d_{G}(u)+d_{G}(v)\right\}+3.2(n-2)\left\{d_{G}(u)+d_{G}(v)\right\}^{2}-\left\{d_{G}(u)+d_{G}(v)\right\}^{3}\right] \\
& =8(n-2)^{3} \bar{m}-12(n-2)^{2} \sum_{\epsilon \in(\bar{G})}\left[d_{G}(u)+d_{G}(v)\right]+6(n-2) \sum_{\epsilon \in(\bar{\sigma})}\left[d_{G}(u)+d_{G}(v)\right]^{2}-\sum_{\epsilon \in E(\bar{G})}\left[d_{G}(u)+d_{G}(v)\right]^{3} \\
& =8(n-2)^{3} \bar{m}-12(n-2)^{2} \bar{M}_{1}(G)+6(n-2) \overline{H M}_{1}(G)-\bar{K}_{3}(G) .
\end{aligned}
$$

Theorem 14. Let G be a graph with n vertices m edges. Then

$$
K_{e}(G)=I E_{2}(G)+2 E M_{2}(G) .
$$

Proof: Consider

$$
K_{e}(G)=\sum_{e \sim f \in E(G)}\left[d_{G}(e)^{2}+d_{G}(f)^{2}\right]
$$

On K Edge Index and Coindex of Graphs

$$
\begin{aligned}
& =\sum_{e \sim f \in E(G)}\left[d_{G}(e)-d_{G}(f)\right]^{2}+2 \sum_{e \sim f \in E(G)} d_{G}(e) \cdot d_{G}(f) \\
& =\sum_{e \sim f \in E(G)}\left[d_{G}(e)-d_{G}(f)\right]^{2}+2 E M_{2}(G) \\
& =I E_{2}(G)+2 E M_{2}(G)
\end{aligned}
$$

Corollary 15. Let G be a graph without isolated vertices. Then

$$
I E_{2}(G)=K_{e}(G)-2 E M_{2}(G)
$$

Theorem 16. Let G be a graph with n vertices and m edges. Then

$$
\bar{K}_{e}(G)=2(m-1) E M_{1}(G)-K_{e}(G)
$$

Proof: Denote $\gamma_{e, f}=d_{G}(e)^{2}+d_{G}(f)^{2}$. Then in view of

$$
\begin{align*}
\sum_{e \in E} \sum_{f \in E} F(e, f)= & \sum_{e \sim f \in E(G)} \gamma_{e, f}+\sum_{e \sim f \in E(\bar{G})} \gamma_{e, f}+\sum_{e \in E} \gamma_{e, e} \\
& =K_{e}(G)+\bar{K}_{e}(G)+2 E M_{1}(G) \tag{1}
\end{align*}
$$

Also

$$
\begin{align*}
\sum_{e \in E} \sum_{f \in E}\left[d(e)^{2}+d(f)^{2}\right] & =m \sum_{e \in E} d(e)^{2}+m \sum_{f \in E} d(f)^{2} \\
& =2 m E M_{1}(G) \tag{2}
\end{align*}
$$

From (1) and (2), we have

$$
\begin{array}{ll}
& K_{e}(G)+\bar{K}_{e}(G)+2 E M_{1}(G)=2 m E M_{1}(G) . \\
\text { Thus } \quad & \bar{K}_{e}(G)=2(m-1) E M_{1}(G)-K_{e}(G) . \tag{3}
\end{array}
$$

Theorem 17. Let G be a graph with n vertices and m edges.
Let \bar{G} be the complement of G. Then
i) $\quad \bar{K}_{e}(\bar{G})=K_{e}(G)$.
ii) $\quad \bar{K}_{e}(G)+\bar{K}_{e}(\bar{G})=2(m-1) E M_{1}(G)$.

Proof: (1) By definition $\bar{K}_{e}(G)$, we have

Therefore $\quad \bar{K}_{e}(\bar{G})=\sum_{e \sim f \in E(G)}\left[d_{G}(e)^{2}+d_{G}(f)^{2}\right]=K_{e}(G)$.
(ii) From (3) and (4) we have

$$
\bar{K}_{e}(G)=2(m-1) E M_{1}(G)-\bar{K}_{e}(\bar{G})
$$

Thus

$$
\bar{K}_{e}(G)+\bar{K}_{e}(\bar{G})=2(m-1) E M_{1}(G)
$$

V.R.Kulli

REFERENCES

1. I.Gutman and N.Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17 (1972) 535-538.
2. V.R.Kulli, On K indices of graphs, International Journal of Fuzzy Mathematical Archive, 10(2) (2016) 105-109.
3. V.R.Kulli, On K coindices of graphs, Journal of Computer and Mathematical Sciences, 7(3) (2016) 107-112.
4. B.Furtula and I.Gutman, A forgotten topological index J. Math. Comput. Chem., 53 (2015) 1184-1190.
5. S.M.Hosamani, A upper bound for the F_{1}-index and its applications to fullerences, submitted.
6. A.Milićević, S.Nikolić and N.Trinajstić, On reformulated Zagreb indices, Molecular Diversity, 8 (2004) 393-399.
7. B.Zhou and N.Trinajstić, Some properties of the reformulated Zagreb indices, J. Math. Chem., 48 (2010) 714-719.
8. A.Ilić and B.Zhou, On reformulated Zagreb indices, Discrete Appl. Math., 160 (2012) 204-209.
9. S.Ji, X. Li and B. Huo, On reformulated Zagreb indices with respect to acyclic, unicyclic and bicyclic graphs, MATCH Commun. Math. Comput. Chem., 72 (2014) 723-732.
10. N.De, Sk. Md. Abu Nayeem and A.Pal, Reformulated first Zagreb index of some graph operations, Mathematics, 3 (2015) 945-960.
11. V.R.Kulli, The first and second $K a$-indices and coindices of graphs, submitted.
12. V.R.Kulli, College Graph Theory, Vishwa International Publications, Gulbarga, India (2012).
