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Abstract. The fuzzy set theory has been applied in many fields such as management, 
engineering and almost in every business enterprise as well as day to day activities.  In 
this paper fully fuzzy linear programming problems with hexagonal fuzzy numbers were 
discussed. A new approach for solving fully fuzzy linear programming problems 
(FFLPP) is proposed, based upon the new Ranking function, which is divided as two 
Trapezoidal and average values of the same were taken. This paper compares the three 
different ranking functions by solving some FFLLP problems which are tabulated. 
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1. Introduction 
Fuzzy Logic was initiated in 1965 by Lotfi A. Zadeh, Professor at the University of 
California in Berkeley. Basically, Fuzzy Logic (FL) is a multivalued logic that allows 
intermediate values to be defined between conventional evaluations like true/false, 
yes/no, high/low, etc. Ranking fuzzy number is used mainly in decision-making, data 
analysis, artificial intelligence and various other fields of operation research. In fuzzy 
environment ranking fuzzy numbers is a very important decision making procedure. The 
idea of fuzzy set was first proposed by Bellman and Zadeh [5] as a mean of handling 
uncertainty that is due to imprecision rather than randomness. The concept of Fuzzy 
Linear Programming (FLP) was first introduced by Tanaka et al. [16, 17]. Zimmerman 
[19] introduced fuzzy linear programming in fuzzy environment. Chanas [6] proposed a 
fuzzy programming in multiobjective linear programming. Allahviranloo et al. [2] 
proposed a new method for solving fully fuzzy linear programming problems by the use 
of ranking function. Kumar et al. [11] proposed a new method for solving fully fuzzy 
linear programming problems with inequality constraints. Abbasbandy and Asady [1] 
suggested a sign distance method for ranking fuzzy numbers in 2006. Rajarajeswari et al. 
[15] presented a new operation on hexagonal fuzzy numbers. Liou and Wang [13] 
presented ranking fuzzy numbers with interval values. Verdegay [18] have developed 
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three methods for solving three models of fuzzy integer linear programming based on the 
representation theorem and on fuzzy number ranking method. Nasseri et.al [14] proposed 
a new method for solving fuzzy linear programming problems in which he has used the 
fuzzy ranking method for converting the fuzzy objective function into crisp objective 
function. Lee and Li [12] discussed the comparison of fuzzy numbers. Amit Kumar et al. 
[3, 4] presented a new method for solving fuzzy linear programs with Trapezoidal fuzzy 
numbers. Cheng [8] used a centroid based distance method to rank fuzzy numbers in 
1998.Kauffmann and Gupta [9] introduced to Fuzzy Arithmetic. Kolman and Hill [10] 
was introduced a FFLP problem. Chen [7] proposed the ranking trapezoidal fuzzy 
number using maximizing and minimizing set decomposition principle and sign distance. 
In this paper, some preliminaries are presented in section 2. Section 3 describes the 
proposed method with one numerical example and obtained results were discussed. 
Section 4 concludes the paper. 
 
2. Preliminaries 
Definition 2.1.The characteristic function µA of a crisp set A ∁ X assigns a value either 0 
or 1 to each member in X. This function can be generalized to a function μ�� such that the 
value assigned to the element of the universal set X fall within a specified range i.e.μ�� : 
X → [0,1]. The assigned value indicate the membership function and the set � � = {(x, 
μ��(x)); x 	 X} defined by μ��(x) for x 	 X is called fuzzy set.   
 
Definition 2.2. An effective approach for ordering the elements of F(R) is also to define a 
ranking function ℜ :F(R) → R which maps each fuzzy number into the real line, where a 
natural order exists. We define orders on F(R) by:�� ≥ �if and only if R (�� ) ≥ R (� ), 
�� ≤ �if and only if R (�� ) ≤ R (� ),  
�� = �    if and only if R (�� ) = R (� ) 
 
Definition 2.3. A fuzzy number ��

�  is a hexagonal fuzzy number denoted by  
��
�  = (��, ��, ��, ��, �� ,�� )where (��, ��, ��, ��, �� ,�� ) are real numbers and its 
membership function  μ��� (x) is given below. 
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Figure 1: Graphical representation of a hexagonal fuzzy number for x ∈ [0, 1] 
 
3. Proposed method 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In this paper, the hexagonal has been divided into two plane figures. These two 
plane figures are trapezoidal ABEF and BCDE (Fig.2).Then the ranking function were 
taken for ABEF and BCDE and the four lines were joined from x-axis to hexagonal 
(Fig.3). Average has been taken by using all six points (Fig.4). Let ��

�  = (��, ��,��, ��, 
��, ��) be a hexagonal fuzzy number. The ranking functions are obtained as below: 

ℜ(� � ) =
��#���#��#��#�� #�!

�
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ℜ(� � ) =
��#��#��#��#� #�!

�
                        (3.2)                

ℜ(� � ) =
��#��#��#��#� #�!

�
                        (3.3)                

 
Algorithm 
Step 1: Formulate the chosen problem into the following fully fuzzy linear programming  
Problem: Max (or) min$̃ = &̃'(�' 

Subject to �)*'(�' ≤ +�* , 
          (�' ≥ 0 
Step 2: Using the Ranking functions (3.1, 3.2, 3.3), the FFLPP transformed into FVLPP. 
Step 3: Solve the FVLPP by using simplex method / Big-M method. Let the solution be 
(� j. Hence the solution of FFLPP is  (,

∗� . 
Step 4: Express the problem in standard form by introducing slack / surplus variables, to 
convert the inequality constraints into equations.  
Step 5: Compute the value of .� == CBY j-Cj     j ≠ B,   j=1...n. 
 (i) If all .� ≥ 0∀0 for maximization problem  
 (ii) If all .�< 0 ∀0  for minimization problem. Then the current solution is optimal, 
otherwise go to step 6. 
Step 6: Determine the basic variable (�k, which will be replaced by the non-basic variable,  

Where k = arg min {ℜ(+�1
� )} i=1, 2….m, in maximization problem and  

k = arg max {ℜ(+�1
� )} i=1, 2….m, in minimization problem. 

Step 7: Perform the pivot operation and return to step 5. Then repeat the procedure until a 
fuzzy optimal solution is obtained.  
 
Example 3.1. Maximize (11, 13, 15, 17, 19, 21) (�1 + (31, 33, 35, 37, 39, 41) (�2   
Subject to  
(41, 43, 45, 47, 49, 51) (�1 + (61, 63, 65, 67, 69, 71) (�2   ≤  (151, 153, 155, 157, 159, 161) 
(81, 83, 85, 87, 89, 91) (�1 + (101, 103, 105, 107, 109, 111) (�2   ≤  (271, 273, 275, 277, 
279, 281) 
Solution: 
Maximize (11, 13, 15, 17, 19, 21) (�1 + (31, 33, 35, 37, 39, 41) (�2   
Subject to  
 (41, 43, 45, 47, 49, 51) (�1 + (61, 63, 65, 67, 69, 71) (�2   + (1, 1, 1, 1, 1, 1) (�3 = (151, 153, 155, 

157, 159, 161)  
 (81, 83, 85, 87, 89, 91)(�1 + (101, 103, 105, 107, 109, 111)(�2 +(1, 1, 1, 1, 1, 1) (3 4  = (271, 273, 

275, 277, 279, 281) 

 (�1, (�2, (�3, (�4,   ≥ 0 
Ranking function (i) 
 
Maximize .�= 32(�1 + 72(�2 + 0(�3 + 0(�4  
Subject to   
92(�1+ 132(�2 +(�3 = (151, 153, 155, 157, 159, 161) 
172(�1+ 212(�2 +(�4 = (271, 273, 275, 277, 279, 281) 
(�1, (�2,  (�3,  (�4, ≥ 0. 
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Initial table 
Basis (�1 (�2 (�3 (�4 RHS ℜ(+�1

� ) 
(�3 92 132 1 0 (151, 153, 155, 157, 159, 161) 312 
(�4 172 212 0 1 (271, 273, 275, 277, 279, 281) 552 
.� -32 -72 0 0 (0,0,0,0,0,0)  
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Since  .�   ≥  0, the fuzzy optimal solution of the FVLPP and FFLPP is 
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Ranking function (ii) 
Maximize .�= 24(�1 + 54(�2 + 0(�3 + 0(�4  
Subject to   
69(�1+ 99(�2 +(�3   = (151, 153, 155, 157, 159, 161)  
129(�1+ 159(�2 +(�4 = (271, 273, 275, 277, 279, 281) 
(�1, (�2, (�3, (�4, ≥ 0. 
 
The fuzzy optimal solution of the FVLPP and FFLPP is (�
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Ranking function (iii) 
Maximize .�= 16(�1 + 36(�2 + 0(�3 + 0(�4  
Subject to   
46(�1+66(�2+(�3 = (151,153,155,157,159, 161) 
86(�1+106(�2+(�4= (271,273,275,277,279,281) 
(�1, (�2, (�3, (�4, ≥ 0 
 
The fuzzy optimal solution of the FVLPP and FFLPP is (�
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Table1: Comparison of fuzzy optimal solution and fuzzy optimal values using three ranking functions 
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4. Conclusion 
In this paper a new method is proposed for solving the fuzzy optimal solution of FFLP problem transform 
into FVLP problems. The FFLP problem is converted into FVLP problem using new Ranking function. 
We have obtained the same results by using the above three ranking functions (3.1), (3.2), (3.3). Ranking 
function is reasonable and effective for calculating the hexagonal weights of criteria. Therefore it is easier 
to solve fully fuzzy linear programming problem.  
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