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1. Introduction   
All graphs considered here are finite, undirected and without loops or multiple lines. We 
use the terminology of [2]. 

The line graph of G, denoted L(G), is the intersection graph Ω(X). Thus the 
points of L(G) are the lines of G, with two points of L(G) are adjacent whenever the 
corresponding lines of G are adjacent. We write L1(G)=L(G), L2(G)=L(L(G)), and in 
general the iterated line graph is Ln(G)=L(Ln−1(G)). Many other graph valued functions in 
graph theory were studied, for example, in [4-10]. 

 
The following will be useful in the proof and discussion of our results. 
 

Theorem A. [1, p.273] Let G be a graph with p points and q lines. Then 
(i) The degree in L(G) of a line vw of G is deg v+deg w−2 ; 
(ii)  L(Pp)≅Pp−1,  for p ≥ 1. 

 
Theorem B. [3] A connected graph with p ≥ 2 points is a nonempty path if and only if 
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2. Results on labeled graphs 
In the following theorem, we deduce an equality satisfying the degree of any point of an 
iterated line graph of a labeled path.  
 
Theorem 1. Let Pn be a path with n (n≥2) points labeled by 1,2,…,n in sequence. Then the 

degree of the point mku , the kth point of an iterated line graph )( n
m PL , where 1≤k≤(n−m) 

and 1≤m<n satisfies the following equalities; 
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        =0 when k=1 and m=n−1 
        =1 when k=1 or k= n−m 
        =2 when 1<k<( n−m), where di (k≤ i≤ k+m) is the degree of an ith point of Pn. 
Proof: Suppose Pn is a path with n (n≥2) points labeled by 1,2,…,n in sequence such that 

11 == ndd  and .2... 132 ==== −nddd  Let ,m
ku  )(1 mnk −≤≤  be the thk  point of 

an iterated line graph .1),( nmPL n
m <≤  We prove the result by using mathematical 

induction on m. 

 Suppose m=1. Then by Theorem A, .)()( 1
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(2,3), … , (n−1,n) of Pn respectively. By Theorem A, the degree in L(G) of a line (v,w) of 
G is dv + dw −2 . Thus, 
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     =1 when k=1 or k=n−1 
    =2 when 1<k<(n−1). 
Hence the result is true for m=1. 

 Suppose m=2. Then .)())(()( 21
2

−− === nnnn PPLPLLPL Label these ( 2−n ) 

points by 2
2

2
2

2
1 ,...,, −nuuu  in order that the points 2

2
2
2

2
1 ,...,, −nuuu  represents the lines 

( 1
2

1
1 , uu ), ( 1

3
1
2 , uu ),…, ( 1

1
1

2 , −− nn uu ) of L(Pn) respectively. 

Consider,   

2)2()2(

2

3221

1
2

1
1

2
1

−−++−+=
−+=

dddd

dududu
        

(From the above case when m=1) 
                      = 62 321 −++ ddd  



Results on Labeled Path and its Iterated Line Graphs 

127 
 

            = 122 12
3

2

2
2

2

1
1 =+−







+






+ +ddd . 

 Now, 21
3

1
2

2
2 −+= dududu  

       = 2)2()2( 4332 −−++−+ dddd  

       = 62 432 −++ ddd  

       = 222 12
4

2

2
3

2

1
2 =+−







+






+ +ddd   

      ------------------------------------------- 

Similarly, 222 12
1

2

2
2

2

1
3

2
3 =+−







+






+= +
−−−− nnnn ddddu   

      ,122 12
2

2
1

2

1
2

2
2 =+−







+






+= +
−−− nnnn ddddu  

Since .21 1321 ====== −nn dddanddd L  

In general, 22 12
2

2

2
1

2

1

2 +−






+






+= +
++ kkkk ddddu  

    =1 when k=1 or k=n−2 
    =2 when 1<k<(n−2). 
Hence the result is true for m=2. 

 Assume the result is true for ),(1
n

m PL −  where 1<m<n. 

 We now prove the result is true for ).( n
m PL  By Theorem A, 
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        ≠0, since m<n that is m−1≠ n−1           
        =1 when k=1 or k= n−(m−1) 
        =2 when 1<k<(n− (m−1)). 
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        =0 when k=1 and m=n−1 
        =1 when k=1 or k= n−m 
        =2 when 1<k<(n−m). This completes the proof of the theorem. 
 
Corollary 2. Let Pn be a path with n (n≥2) points labeled by 1,2,…,n in sequence. Then 

the degree of an isolated point u of the (n−1)th  iterated line graph )(1
n

n PL −  satisfies the 

following condition; 
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ddd , where di (1≤ i≤ 

n) is the degree of an ith point of Pn. 
 
Illustration 3. The above Corollary is illustrated by taking a path with 5 points. The 
points of the path and its iterated line graphs are labeled as shown in Figure 1. 
                                  e1            e2                  e3                  e4                                   
                P5:                        
           1        2           3   4      5         

                    '
1e            '

2e   '
3e  

         L1(P5):            e1    e2          e3                  e4  

               ''
1e          ''

2e  

         L2(P5):           '
1e  '

2e      '
3e   

               '''
1e  

         L3(P5):       ''
1e          ''

2e    
 

         L4(P5):    '''
1e  

             Figure 1:  
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By Theorem A, the degree in L(G) of a line vw of G is dv+dw−2. Now consider, 
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The Theorem B and Theorem 1 lead to the following result: 
 

Theorem 4. Let Pn be a path with n (n≥2) points labeled by 1, 2 ,…, n in sequence and 
m
ku  be the  kth point of )( n

m PL , where 1≤k≤(n−m), 1≤m<n and m≠n−1. Then 
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