Results on Labeled Path and its Iterated Line Graphs

M.S.Biradar ${ }^{1}$ and V.R.Kulli ${ }^{2}$
${ }^{1}$ Department of Mathematics, Govt. First Grade College, Basavakalyan-585 327, India e-mail: biradarmallikarjun@yahoo.co.in
${ }^{2}$ Department of Mathematics, Gulbarga University, Gulbarga-585106, India
Received 1 May 2016; accepted 10 May 2016

Abstract. In this paper, we present results on labeled path and its iterated line graphs.

Keywords: labeled path, line graph, iterated line graph
AMS Mathematics Subject Classification (2010): 05C72

1. Introduction

All graphs considered here are finite, undirected and without loops or multiple lines. We use the terminology of [2].

The line graph of G, denoted $L(G)$, is the intersection graph $\Omega(X)$. Thus the points of $L(G)$ are the lines of G, with two points of $L(G)$ are adjacent whenever the corresponding lines of G are adjacent. We write $L^{1}(G)=L(G), L^{2}(G)=L(L(G))$, and in general the iterated line graph is $L^{n}(G)=L\left(L^{n-1}(G)\right)$. Many other graph valued functions in graph theory were studied, for example, in [4-10].

The following will be useful in the proof and discussion of our results.
Theorem A. [1, p.273] Let G be a graph with p points and q lines. Then
(i) The degree in $L(G)$ of a line $v w$ of G is deg $v+$ deg $w-2$;
(ii) $L\left(P_{p}\right) \cong P_{p-l}$, for $p \geq 1$.

Theorem B. [3] A connected graph with $p \geq 2$ points is a nonempty path if and only if

$$
\sum_{i=1}^{p} d_{i}^{2}=4 p-6
$$

2. Results on labeled graphs

In the following theorem, we deduce an equality satisfying the degree of any point of an iterated line graph of a labeled path.

Theorem 1. Let P_{n} be a path with $n(n \geq 2)$ points labeled by $1,2, \ldots, n$ in sequence. Then the degree of the point u_{k}^{m}, the $k^{t h}$ point of an iterated line graph $L^{m}\left(P_{n}\right)$, where $1 \leq k \leq(n-m)$ and $1 \leq m<n$ satisfies the following equalities;

$$
\begin{aligned}
d u_{k}^{m} & =d_{k}+\binom{m}{1} d_{k+1}+\binom{m}{2} d_{k+2}+\ldots+\binom{m}{m-1} d_{k+m-1}+\binom{m}{m} d_{k+m}-2^{m+1}+2 \\
& =0 \text { when } k=1 \text { and } m=n-1 \\
& =1 \text { when } k=1 \text { or } k=n-m \\
& =2 \text { when } 1<k<(n-m) \text {, where } d_{i}(k \leq i \leq k+m) \text { is the degree of an } i^{\text {th }} \text { point of } P_{n} .
\end{aligned}
$$

Proof: Suppose P_{n} is a path with $n(n \geq 2)$ points labeled by $1,2, \ldots, n$ in sequence such that $d_{1}=d_{n}=1$ and $d_{2}=d_{3}=\ldots=d_{n-1}=2$. Let $u_{k}^{m}, 1 \leq k \leq(n-m)$ be the $k^{t h}$ point of an iterated line graph $L^{m}\left(P_{n}\right), 1 \leq m<n$. We prove the result by using mathematical induction on m.

Suppose $m=1$. Then by Theorem $A, L^{1}\left(P_{n}\right)=L\left(P_{n}\right)=P_{n-1}$. Label these $(n-1)$ points by $u_{1}^{1}, u_{2}^{1}, \ldots, u_{n-1}^{1}$ in order that the points $u_{1}^{1}, u_{2}^{1}, \ldots, u_{n-1}^{1}$ represents the lines (1,2), $(2,3), \ldots,(n-1, n)$ of P_{n} respectively. By Theorem A, the degree in $L(G)$ of a line (v, w) of G is $d_{v}+d_{w}-2$. Thus,

$$
\begin{aligned}
& d u_{1}^{1}=d_{1}+d_{2}-2=d_{1}+\binom{1}{1} d_{2}-2^{1+1}+2=1 \\
& d u_{2}^{1}=d_{2}+d_{3}-2=d_{2}+\binom{1}{1} d_{3}-2^{1+1}+2=2 \\
& d u_{n-2}^{1}=d_{n-2}+d_{n-1}-2=d_{n-2}+\binom{1}{1} d_{n-1}-2^{1+1}+2=2 \\
& d u_{n-1}^{1}=d_{n-1}+d_{n}-2=d_{n-1}+\binom{1}{1} d_{n}-2^{1+1}+2=1,
\end{aligned}
$$

Since $d_{1}=d_{n}=1$ and $d_{2}=d_{3}=\ldots=d_{n-1}=2$.
In general, $d u_{k}^{1}=d_{k}+\binom{1}{1} d_{k+1}-2^{1+1}+2$

$$
\begin{aligned}
& =1 \text { when } k=1 \text { or } k=n-1 \\
& =2 \text { when } 1<k<(n-1) .
\end{aligned}
$$

Hence the result is true for $m=1$.
Suppose $m=2$. Then $L^{2}\left(P_{n}\right)=L\left(L\left(P_{n}\right)\right)=L\left(P_{n-1}\right)=P_{n-2}$. Label these $(n-2)$ points by $u_{1}^{2}, u_{2}^{2}, \ldots, u_{n-2}^{2}$ in order that the points $u_{1}^{2}, u_{2}^{2}, \ldots, u_{n-2}^{2}$ represents the lines $\left(u_{1}^{1}, u_{2}^{1}\right),\left(u_{2}^{1}, u_{3}^{1}\right), \ldots,\left(u_{n-2}^{1}, u_{n-1}^{1}\right)$ of $L\left(P_{n}\right)$ respectively.
Consider,

$$
\begin{aligned}
d u_{1}^{2} & =d u_{1}^{1}+d u_{2}^{1}-2 \\
& =\left(d_{1}+d_{2}-2\right)+\left(d_{2}+d_{3}-2\right)-2
\end{aligned}
$$

(From the above case when $m=1$)

$$
=d_{1}+2 d_{2}+d_{3}-6
$$

Results on Labeled Path and its Iterated Line Graphs

$$
=d_{1}+\binom{2}{1} d_{2}+\binom{2}{2} d_{3}-2^{2+1}+2=1
$$

Now, $d u_{2}^{2}=d u_{2}^{1}+d u_{3}^{1}-2$

$$
\begin{aligned}
& =\left(d_{2}+d_{3}-2\right)+\left(d_{3}+d_{4}-2\right)-2 \\
& =d_{2}+2 d_{3}+d_{4}-6 \\
& =d_{2}+\binom{2}{1} d_{3}+\binom{2}{2} d_{4}-2^{2+1}+2=2
\end{aligned}
$$

Similarly, $d u_{n-3}^{2}=d_{n-3}+\binom{2}{1} d_{n-2}+\binom{2}{2} d_{n-1}-2^{2+1}+2=2$

$$
d u_{n-2}^{2}=d_{n-2}+\binom{2}{1} d_{n-1}+\binom{2}{2} d_{n}-2^{2+1}+2=1
$$

Since $d_{1}=d_{n}=1$ and $d_{2}=d_{3}=\cdots=d_{n-1}=2$.
In general, $d u_{k}^{2}=d_{k}+\binom{2}{1} d_{k+1}+\binom{2}{2} d_{k+2}-2^{2+1}+2$

$$
\begin{aligned}
& =1 \text { when } k=1 \text { or } k=n-2 \\
& =2 \text { when } 1<k<(n-2) .
\end{aligned}
$$

Hence the result is true for $m=2$.
Assume the result is true for $L^{m-1}\left(P_{n}\right)$, where $1<\mathrm{m}<\mathrm{n}$.
We now prove the result is true for $L^{m}\left(P_{n}\right)$. By Theorem A, $L^{m}\left(P_{n}\right)=L\left(L^{m-1}\left(P_{n}\right)\right)$ and $L^{m}\left(P_{n}\right)$ has $(n-m)$ points, where $m<n$. Label these $(n-m)$ points by $u_{1}^{m}, u_{2}^{m}, \ldots, u_{n-m}^{m}$ in order that the points $u_{1}^{m}, u_{2}^{m}, \ldots, u_{n-m}^{m}$ represents the lines $\left(u_{1}^{m-1}, u_{2}^{m-1}\right),\left(u_{2}^{m-1}, u_{3}^{m-1}\right), \ldots,\left(u_{n-m}^{m-1}, u_{n-m+1}^{m-1}\right)$ of $L^{m-1}\left(P_{n}\right)$ respectively. By inductive hypothesis, we have

$$
d u_{k}^{m-1}=d_{k}+\binom{m-1}{1} d_{k+1}+\binom{m-1}{2} d_{k+2}+\ldots+\binom{m-1}{m-1} d_{k+m-1}-2^{m}+2
$$

$\neq 0$, since $m<n$ that is $m-1 \neq n-1$
$=1$ when $k=1$ or $k=n-(m-1)$
$=2$ when $1<k<(n-(m-1))$.
Consider,

$$
\begin{aligned}
& d u_{1}^{m}=d u_{1}^{m-1}+d u_{2}^{m-1}-2 \\
& =d_{1}+\binom{m-1}{1} d_{2}+\binom{m-1}{2} d_{3}+\ldots+\binom{m-1}{m-1} d_{m}-2^{m}+2 \\
& +d_{2}+\binom{m-1}{1} d_{3}+\binom{m-1}{2} d_{4}+\ldots+\binom{m-1}{m-2} d_{m}+\binom{m-1}{m-1} d_{m+1}-2^{m}+2-2
\end{aligned}
$$

$$
\begin{aligned}
= & d_{1}+\left[\binom{m-1}{0}+\binom{m-1}{1}\right] d_{2}+\left[\binom{m-1}{1}+\binom{m-1}{2}\right] d_{3}+\ldots+\left[\binom{m-1}{m-2}+\binom{m-1}{m-1}\right] d_{m} \\
& +\binom{m-1}{m-1} d_{m+1}-2 \cdot 2^{m}+4-2
\end{aligned}
$$

We know that $\binom{m}{r-1}+\binom{m}{r}=\binom{m+1}{r}$ and $\binom{m}{m}=\binom{m+1}{m+1}=1$.
Therefore, $d u_{1}^{m}=d_{1}+\binom{m}{1} d_{2}+\binom{m}{2} d_{3}+\ldots+\binom{m}{m-1} d_{m}+\binom{m}{m} d_{m+1}-2^{m+1}+2$.
Similarly, $d u_{n-m}^{m}=d_{n-m}+\binom{m}{1} d_{n-m+1}+\binom{m}{2} d_{n-m+2}+\ldots+\binom{m}{m} d_{m+n-m}-2^{m+1}+2$.
In general,

$$
\begin{aligned}
d u_{k}^{m} & =d_{k}+\binom{m}{1} d_{k+1}+\binom{m}{2} d_{k+2}+\ldots+\binom{m}{m-1} d_{k+m-1}+\binom{m}{m} d_{k+m}-2^{m+1}+2 \\
& =0 \text { when } k=1 \text { and } m=n-1 \\
& =1 \text { when } k=1 \text { or } k=n-m \\
& =2 \text { when } 1<k<(n-m) . \text { This completes the proof of the theorem. }
\end{aligned}
$$

Corollary 2. Let P_{n} be a path with $n(n \geq 2)$ points labeled by $1,2, \ldots, n$ in sequence. Then the degree of an isolated point u of the $(n-1)^{\text {th }}$ iterated line graph $L^{n-1}\left(P_{n}\right)$ satisfies the following condition;
$d u=d_{1}+\binom{n-1}{1} d_{2}+\binom{n-2}{2} d_{3}+\ldots+\binom{n-1}{n-2} d_{n-1}+\binom{n-1}{n-1} d_{n}-2^{n}+2=0$, where $d_{i}(1 \leq i \leq$ $n)$ is the degree of an $i^{\text {th }}$ point of P_{n}.

Illustration 3. The above Corollary is illustrated by taking a path with 5 points. The points of the path and its iterated line graphs are labeled as shown in Figure 1.

Figure 1:

Results on Labeled Path and its Iterated Line Graphs

By Theorem A, the degree in $L(G)$ of a line $v w$ of G is $d_{v}+d_{w}-2$. Now consider,

$$
\begin{aligned}
d e_{1}^{\prime \prime \prime} & =d e_{1}^{\prime \prime}+d e_{2}^{\prime \prime}-2 \\
& =\left(d e_{1}^{\prime}+d e_{2}^{\prime}-2\right)+\left(d e_{2}^{\prime}+d e_{3}^{\prime}-2\right)-2 \\
& =d e_{1}^{\prime}+2 d e_{2}^{\prime}+d e_{3}^{\prime}-6 \\
& =\left(d e_{1}+d e_{2}-2\right)+2\left(d e_{2}+d e_{3}-2\right)+\left(d e_{3}+d e_{4}-2\right)-6 \\
& =d e_{1}+3 d e_{2}+3 d e_{3}+d e_{4}-14 \\
& =\left(d_{1}+d_{2}-2\right)+3\left(d_{2}+d_{3}-2\right)+3\left(d_{3}+d_{4}-2\right)+\left(d_{4}+d_{5}-2\right)-14 \\
& =d_{1}+4 d_{2}+6 d_{3}+4 d_{4}+d_{5}-30 .
\end{aligned}
$$

Since $d_{1}=d_{5}=1$ and $d_{2}=d_{3}=d_{4}=2$, we have

$$
d e_{1}^{\prime \prime \prime}=d_{1}+\binom{4}{1} d_{2}+\binom{4}{2} d_{3}+\ldots+\binom{4}{3} d_{4}+\binom{4}{4} d_{5}-2^{5}+2=0
$$

The Theorem B and Theorem 1 lead to the following result:
Theorem 4. Let P_{n} be a path with $n(n \geq 2)$ points labeled by $1,2, \ldots, n$ in sequence and u_{k}^{m} be the $k^{\text {th }}$ point of $L^{m}\left(P_{n}\right)$, where $1 \leq k \leq(n-m), 1 \leq m<n$ and $m \neq n-1$. Then $\sum_{i=1}^{n-m} d u_{k}^{m}=4(n-m)-6$.

REFERENCES

1. L.W.Beineke and R.J.Wilson, Selected topics in graph theory, Academic Press Inc. (London) Ltd. (1978).
2. V.R. Kulli, College Graph Theory, Vishwa International Publications, Gulbarga, India (2012).
3. V.R.Kulli, A characterization of paths, The Mathematics Education, 9 (1975) 1-2.
4. V.R.Kulli and M.S.Biradar, The middle blict graph of a graph, International Research Journal of Pure Algebra, 5(7) (2015) 111-117.
5. V.R.Kulli and M.S.Biradar, The point block graph of n'a graph, Journal of Computer and Mathematical Sciences, 5 (5) (2014) 476-481.
6. V.R.Kulli and M.S.Biradar, Planarity of the point block graph of a graph, Ultra Scientist, 18, 609-611 (2006).
7. V.R.Kulli and M.S.Biradar, The point block graphs and crossing numbers, Acta Ciencia Indica, 33(2) (2007) 637-640.
8. V.R.Kulli and M.S.Biradar, The blict graph and blitact graph of a graph, Journal of Discrete Mathematical Sciences \& Cryptography, 4(2-3) (2001) 151-162.
9. V.R.Kulli and M.S.Biradar, The line splitting graph of a graph, Acta Ciencia Indica, XXVIII M (3) (2002) 435.
10. V.R.Kulli and M.S.Biradar, On Eulerian blict graphs and blitact graphs, Journal of Computer and Mathematical Sciences, 6(12) (2015) 712-717.
