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Abstract. Necessary and sufficient conditions for the product of k-EP matrices of rank r 
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have shown that a block matrix in Minkowski space can be expressed as a product of k-
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1. Introduction 
Throughout we shall deal with Cn×n the space of complex n-tuples.  Let G be the 
Minkowski metric tensor defined by Gx = (x1, -x2,-x3,….,-xn)

T for x = (x1,x2,x3,…,xn) ∈ 
Cn.  Clearly the Minkowski metric matrix 
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nI
G     G=G* and G2=I2           (1.1) 

  
        Minkowski inner product on Cn  is defined by (u,v) = [u,Gv], where [.,.] denotes the 
conventional Hilbert space inner product.  A space with Minkowski inner product is 
called a Minkowski space and denoted as m.  With respect to the Minkowski inner 
product, since   

(Ax,y) = (x,A~`y), A~ = GA*G                                                                                       (1.2) 

 is called the Minkowski adjoint of the matrix A∈ Cn×n  and A* is the  usual Hermitian 
adjoint. 

(P.1)  For A1,A2∈ Cn×n, (A1 + A2)
~ =   A1

~ + A2
~, (A1A2)

~ = A2
~
 A1

~ and (A1
~
 )

~ = A1 

  Let A- be a generalized inverse (AA-A=A) and  A† is the Moore Penrose of A [9]. 
         A matrix  A  is called EPr, if rk(A) = r and  N(A) = N(A*). It is well known that 
(p.163[1]) A is EP if and only if AA† = A†A.  The concept of EP matrices over the field 
of complex number was introduced by Schwerdfeger  where rk(A), N(A) and R(A) 
denote the rank of A, null space of A and range space of A respectively.  
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             Throughout let ‘k’ be a fixed product of disjoint transpositions in Sn = {1,2,….n} 
and K be the associated permutation matrix satisfying  
(P.2) K2 = In 
(P.3) K~ = GK*G = GKG = K 

      A matrix A = (aij) ∈ Cn×n is k-hermitian if aij = āk(j),k(i) for i,j = 1,2,…,n.  A theory for 
k-hermitian matrices is developed in [3].  The concept of k-EP matrices is introduced in 
[6] as a generalization of k-hermitian matrices and as an extension of complex EP 
matrices ([1]).   For x = (x1,x2,….,xn)

T∈ Cn ,let k(x) = (xk(1), xk(2), ….,xk(n))
T ∈ Cn. 

       A matrix A∈ Cn×n  is said to be k-EP if it satisfies the condition Ax = 0⇔A* k (x) = 0 
(or) equivalently N(A) = N(A*K).  Moreover, A is said to be k-EPr if A is k-EP and  rk 
(A) = r. Let  k = k1k2 as in Lemma (2.12) of [6], where k1 is the product of disjoint 
transpositions on  Sn = {1,2,….n} leaving (r+1,r+2,…,n) fixed  and k2 is the product of 
disjoint transpositions leaving (1,2,…,r) fixed. Then  the associated permutation matrix of 
k = k1k2 is  
 









=

−rnI

K
K

0

01










20

0

K

I r = 








2

1

0

0

K

K
                                                            (1.3)   

where 
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0

01 and 
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K

I r  

are the permutation matrices corresponding to the transpositions k1 and  k2 respectively.  
For further properties of k-EP matrices one may refer [6].  Let us partition the Minkowski 
metric tensor G of order n in conformity with that of K in (1.3) as  
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0

01  where G1 is the Minkowski metric tensor of order as that of A. 

 
           In [5] the concept of range symmetric matrix in Minkowski space m is introduced 
and developed analogous to that of EP matrices.A matrix A∈ Cn×n  is said to be range 
symmetric matrix in m ⇔ N(A) = N(A~).  In our earlier work [7], we have introduced the 
concept of k-EP matrices in Minkowski space as an extension of EP matrix in m.  In this 
paper we have introduced the product of two k-EP matrices in m of rank r to be k-EP in m 
and  k-EP block matrices in m. 
 
2. Preliminaries 
Lemma 2.1. Let A and B be matrices in m. Then  N(A*) ⊆ N(B*)⇔ N(A~) ⊆ N(B~). 
 
Theorem 2.2. [4] For A,B,C ∈ Cm×n , the following are equivalent: 

(1) CA-B is invariant for every A- ∈ Cn×m  
(2) N(A) ⊆ N(C) and N(A*) ⊆ N(B*) 
(3) C = CA-A and B = AA-B for every A-∈{1} 
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Definition 2.3. [4] Let 
A B

M
C D

 
=  
 

            (2.1) 

be an n×n matrix.  A generalized  schur complement of A in M denoted by M/A is 
defined as  D-CA-B, where A- is a generalized inverse of A. 

      If CA-B is invariant for all choice of g inverse of A, then this reduces to the Schur 
complement M/A = D-CA†B,where  A† the Moore Penrose inverse of A is the unique 
solution of the equations AA†A =A,  A†AA † = A†,AA† and A†A are Hermitian. 

     Hence forth we are concerned with n×n matrices M partitioned in the form (2.1) with 
rk(M) = rk(A) = r 

          It is well known that [2] M of the form (2.1) satisfies N(A)  ⊆ N(C) ⇔ C = YA = 
CA-A similarly N(A*) ⊆ N(B*) ⇔ B = AX = AA-B and D = CA†B = YAX.  Hence (2.1) 
can be written as  

A AX
M

YA YAX

 
=  
 

          

Definition 2.4. [7] A matrix A∈ Cn×n , is said to be k-EP in  m if and only if N(A) = 
N(A~K). 

 
Lemma 2.5. [6] For A∈ Cn×n  , the following are equivalent: 
(1) A is k-EP  
(2) KA is EP 
(3) AK is EP 
(4) KA†A = AA†K 

Remark 2.6. In particular, when k(i) = i for each i,j = 1 to n, then K = I and above 
Theorem  reduces to A†A = AA† which implies that A is an EP matrix ([1], p-163)  
 

 Lemma 2.7. [7] For A∈ Cn×n  , the following are equivalent: 
(1) A is k-EP in m  
(2) GA is k-EP 
(3) AG is k-EP 

Theorem 2.8. [8] Let M be of  the form (2.1), with rk(M) = rk(A) = r then M is k-EP 
matrix in m with k = k1k2 ⇔ A is k1-EP in  m and CA†K1 = -G1(A

†BK2)
~ 

3. Product of k-EP matrices in Minkowski space: 
In this section we have obtained necessary and sufficient conditions for the product of 
two k-EP matrices in m of rank r to be k-EP in m.  Later we have extended the result to k-
EP block matrices in  m. 
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Theorem 3.1. Let A and B be k-EP matrices in m of rank r and AB be of rank r. Then AB  
is k-EP matrix in m of rank r if and only if N(A) = N(B). 
Proof:  AB is k-EP matrix in  m of rank r 
⇒N(AB) = N(AB)~K                                                               (by Definition 2.4) 
⇒N(B) = N(B~A~) K, since rk(B) = rk(AB) = r                      (by P.1) 
⇒N(B) ⊆ N(A~K) 
⇒N(B) ⊆  N(A)                                                                       (by Definition 2.4) 

⇒N(B) = N(A),  since rk(A) = rk(B) = r  
Conversely, 
       Let N(A) = N(B).  To prove that AB is k-EP in m.  Clearly N(AB) ⊆ N(B).  Since 
rk(AB) = rk(B) = r, we get  
N(AB) = N(B)                                                                                                                (3.1) 
N((AB)~K) = N(B~A~) K ⊆ N(A~K) = N(A)                               (by Definition 2.4)  
  Now N(A) = N(A~K) ⇒ rk(A~K) = rk(A) = r 
N(B) =N(B~K) ⇒ rk(B~K) = rk(B) = r 
N((AB)~K)  ⊆  N(A)                                
rk(AB) ~K = rk(AB)~ = rk(AB) = r 
N((AB)~K) =  N(A), since rk(A) = r           (3.2) 
From (3.1) and (3.2) we get 
N(AB) = N(AB)~K, since N(A) = N(B) 
Thus  AB is k-EP in m.   

Theorem 3.2. Let A, B and AB be k-EP matrices in m of rank r and BA is of rank r, then 
BA is  k-EPr matrix in m. 
Proof:  Let A, B and AB be k-EP matrices in m and  rk(AB) = rk(A) = rk(B) = r 
We claim BA is  k-EPr in m. 
N(BA) ⊆  N(A)                                
rk(BA) = rk(A) = r 
Therefore N(BA) = N(A)             (3.3) 
  N(AB) ⊆  N(B)                                
rk(AB) = rk(B) = r 
Therefore N(AB) = N(B)            (3.4) 
by Theorem (3.1),N(A) = N(B) 
 Therefore N(BA) = N(AB)              (3.5) 
Also N(BA)~K = N(A~B~)K ⊆ N(B~K) = N(B) 
N(BA)~K ⊆ N(B) = N(AB) 
N(BA)~K ⊆  N(AB) 
rk(BA)~K = rk (BA)~= rk(BA) = rk(A) = r 
N(BA)~K  = N(AB)             (3.6) 
From (3.5) and (3.6) it follows that  N(BA) = N(BA)~K 
Therefore BA is k-EPr matrix in m. 

Lemma 3.3. For complex matrices A and B , N(A*K)  ⊆ N(B*K) if and only if N(A~K) 
⊆N(B~K) 
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Proof:  Let us assume that  N(A*K)  ⊆ N(B*K) we need to prove N(A~K) ⊆N(B~K) 
Let us choose x∈N(A~K) ⇒ A~Kx = 0 
⇒ GA*GKx = 0 
⇒A*GKx = 0 
⇒A*KKGKx = 0                                                            (by P.2) 
⇒ A*Ky = 0, where y = KGKx, and hence Ky = GKx 
⇒y∈ N(A*K)  ⊆ N(B*K) 
⇒B*Ky = 0 
⇒B*GKx = 0 
⇒GB*GKx = 0 
⇒B~Kx = 0 
⇒ x∈N(B~K) 
Thus N(A~K) ⊆N(B~K). 
Conversely, let us assume that N(A~K) ⊆N(B~K). 
We need to prove that N(A*K) ⊆N(B*K) 
Let us choose x∈N(A*K) ⇒ A*Kx = 0 
⇒ GA*GGKx = 0 
⇒A~GKx = 0 
⇒A~ Ky = 0, where y = KGKx 
⇒y ∈ N(A~K) ⊆N(B~K). 
⇒B~Ky = 0 
⇒GB*GKy = 0 
⇒GB*GGKx = 0 
⇒B*Kx = 0 
⇒ x∈N(B*K) 
Thus N(A*K) ⊆N(B*K). Hence the result. 

Lemma 3.4.  Let M be of the form (2.1) be  k-EP in m with k = k1k2  A is k1-EP in  m and 
there exists an r×(n-r) matrix X such that 

1 2 1 1 2 1

A AX
M

G K X K A G K X K AX

 
=  − − ∼ ∼ ∼ ∼

 

Proof: Since M is of the form (2.1) by using Lemma 3.3 and Theorem2.2, M satisfy 
N(A) ⊂ N(C), N(A*) ⊆ N(B*) ⇔ N(A*K 1) ⊆ N(B*K 1) ⇔ N(A~K1) ⊂ N(B~K1) and D = 
CA†B.  Hence there exist (n-r) × r matrix Y and n × (n-r) matrix X such that C = YA and 
B=AX. Since A is k1-EP in  m by using Lemma (2.7) and Remark (2.6), K1G1A is EP  
(K1G1A)( K1G1A)  † = (K1G1A)  †(K1G1A) 
 K1G1AA  †G1K1      = A †G1K1 K1G1A1, since G1 = G1

†, K1 = K1
†    

                                                = A †A                           (by (1.1) & (P.2))         (3.7) 
   CA†K1 = -G1 K2

~ (A†B)~                            (by Theorem 2.8)        
     CA†    = -G1 K2

~ (A†B)~K1 

               = -G1 K2
~ (A†AX)~K1                             (by B = AA-B = AX) 

                      = -G1 K2
~ X~ (A†A)~K1                  (by (P.1)) 

               = -G1 K2
~ X~ G1 (A

†A)*G 1K1        (by (1.2)) 
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            CA†    = -G1 K2
~ X~ K1AA†                           (by (3.7)) 

     C = CA†A = -G1 K2
~ X~ K1AA†A                        (since N(A)⊆N(C)) 

Therefore C   =  -G1 K2
~ X~ K1A and D = CA†B = -G1 K2

~ X~ K1AA†AX 
                                                                             =  -G1 K2

~ X~ K1AX. 
 

Thus  

1 2 1 1 2 1

A AX
M

G K X K A G K X K AX

 
=  − − ∼ ∼ ∼ ∼

 

 
Theorem 3.5. 
 

Let 
A B

M
C D

 
=  
 

 and   
F U

L
H K

 
=  
 

, be k-EP in m with k = k1k2 both of the form 

(2.1) and ML be of rank r, then the following are equivalent 
(i) ML is k-EP in m with k= k1k2 
(ii) AF is k1-EP in m  CA†

 = HF† 

(iii) AF is k1-EP in m  A†B = F†U 

Proof: Since M and L are of the form (2.1) by Lemma (3.4) there exists  r×(n-r) matrices 
X and Y such that 

           M =         A                                    AX 

                       -G1K2
~ X~K1A               -G1K2

~ X~K1AX     

            L =         F                                    FY 

                       -G1K2
~ Y  ~K1F               -G1K2

~ Y~K1FY    

Now ML =         A                        AX                              F                         FY 

                       -G1K2
~ X  ~K1A    -G1K2

~ X~K1AX    -G1K2
~ Y  ~K1F       -G1K2

~ Y~K1FY     

              =     A(I-XG1K2
~ Y ~K1)F                          A(I-XG1K2

~ Y  ~K1)FY       

                  -G1K2
~ X  ~K1A (I-XG1K2

~ Y  ~K1)F   -G1K2
~ X  ~K1A (I-XG1K2

~ Y  ~K1)FY   

              =         AZF                                    AZFY 

                       -G1K2
~ X~K1AZF               -G1K2

~ X~K1AZFY     
 
where Z = I-XG1K2

~ Y  ~K1.   
Clearly, N(AZF) ⊂ N (-G1K2

~ X  ~K1AZF) = N(G1K2
~ X  ~K1AZF),  

N(AZF)~  ⊂ N (AZFY)~ and the schur complement of AZF in ML is zero.  For 
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ML/AZF =  -G1K2
~ X  ~K1AZFY + G1K2

~ X  ~K1AZF(AZF) †( AZF)Y                           
               = -G1K2

~ X  ~K1AZFY+G1K2
~ X  ~K1AZFY   = 0 

Hence rk(AZF) = rk(ML) = r.  Thus ML is also of the form (2.1). Since M and L are k-EP 
in  m.  By Theorem (2.8) and Lemma(3.4), A and F are k1-EP in  m.  Now 
-G1(K1(A

†AX)K 2)
~ = -G1K2

~
 (A

†AX) ~GK1G                      (by (P.1) & (P.3)) 
                                =   -G1K2

~
 (A

†AX) ~K1                         (by (P.3)) 
                                =  -G1K2

~X~
 (A

†A)~K1                         (by (P.1)) 
                                =  -G1K2

~X~G1 (A
†A)*G 1K1                (by (1.2)) 

                                =  -G1K2
~X~K1K1

 G1 (A
†A)*G 1K1        (by (P.2)) 

                                =  -G1K2
~X~K1K1

 G1 (A
†A)G1K1        

                                = -G1K2
~X~K1A  A

†                                (by (3.7)) 
    Similarly it can be proved that -G1K2

~Y~K1FF† = -G1(K1(F
†FY)K2) 

~.  We now claim 
AZF is  k1-EP in  m. N(F) ⊂ N(AZF), and rk(AZF) = rk(F) = r, hence it follows N(F) = 
N(AZF).  Also N(A~K1) ⊂ N(AZF)~K1 and rk((AZF)~K1) = rk(AZF) = rk(A) = r = rk(F), 
N(A) = N(A~K1) = N(AZF)~K1 = N(F). 
Thus N(AZF) = N(AZF)~K1 and hence AZF is k1-EP in  m.  By Lemma (2.5) and Lemma 
(2.7) K1G1AZF is EPr and by using (3.7) we have 
 K1G1AZF(AZF)† G1K1 =  (AZF)† AZF            (3.8) 
By using (3.8) for N(AZF) = N(F),  N(AZF)~K1 = N(A~K1) = N(A) we get 
(AZF)(AZF)† = FF† = K1G1(AZF)†AZF G1K1 and                              
 (AZF)†AZF = A†A =K1G1AA †G1K1            (3.9)  
Since H = -G1K2

~Y~K1F and C = -G1K2
~X~K1A. 

We have  
HF† = -G1K2

~Y~K1FF†                                (by 3.9) 
       = -G1K2

~Y~K1 K1G1(AZF)†( AZF) G1K1 
     = -G1K2

~Y~[  (AZF)†( AZF)]~ K1                                                                                     (by P.2) 
     = -G1K2

~Y~[  (AZF)†( AZF)]~ K1
~
                                                                                  (by P.3) 

     = -G1[K 1( (AZF)†( AZF))YK 2]
~  

     Similarly by using (3.9), we have 
CA† = -G1K2

~X~K1
 AZF( AZF) † 

Therefore  
CA† = HF† ⇔-G1K2

~X~K1AZF(AZF)† = -G1[K 1((AZF)†(AZF))YK 2]
~                       (3.10) 

     Now the proof runs as follows: 
 ML is k-EP in m ⇔ AZF is k1-EP in m and  
  G1K2

~X~K1
 AZF( AZF) † = G1[K 1( (AZF)†( AZF))YK 2]

~  
     ⇔ AZF is k1-EP in m and CA† = HF†                                                     (by 3.10)      
     ⇔ N(AZF)=N((AZF)~K1) and CA† = HF†           
   ⇔ N(F)=N(A~K1) = N(A) and CA† = HF†           
     ⇔ AF is k1-EP in m and CA† = HF†                                                       (by Theorem 3.1)      
     ⇔ AF is k1-EP in m and A

†B = F†U                                                       (by Theorem 2.8)      
     Hence the theorem. 
 
Theorem 3.6. Let A and B be k-EP in m of rank r. Then N(A) = N(B) if and only if  
N(PAP~K) = N(PBP~K) where P is unitary in unitary space. 
Proof:    Let A and B  be k-EP in m 
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Assume N(A) = N(B) 
We prove N(PAP~K) = N(PBP~K) 
x∈ N(PAP~K) ⇔ PAP~Kx = 0 
                                       ⇔ AP~Kx = 0 
                                       ⇔  Ay = 0 where y = P~Kx 
                                      ⇔ y∈ N (A) = N(B) 
                           ⇔  By = 0 
   x∈ N(PAP~K) ⇔ BP~Kx = 0 
                                      ⇔ PBP~Kx = 0 
                           ⇔ x∈ N(PBP~K) 
   Thus N(A) = N(B) ⇒ N(PAP~K) = N(PBP~K) 
Conversely we assume that 
N(PAP~K) = N(PBP~K) we claim N(A) = N(B) 
x∈ N(A) ⇔ Ax = 0 
                      ⇔ AP~Ky = 0 
                      ⇔  PAP~Ky = 0 
                      ⇔ y∈ N (PAP~K) = N(PBP~K) 

               ⇔PBP~Ky = 0 
               ⇔BP~Ky = 0 
               ⇔ Bx = 0 
  Thus  N(PAP~K) = N(PBP~K) ⇒ N(A) = N(B). 

Product Decomposition of  k-EP matrices in m 

Theorem 3.7. Let M be of the form (2.1) be k-EP in m with k = k1k2.  Then M can be 
written as a product of k-EP matrices in m. 

Proof:  Since M is of the form (2.1) and M is k-EP in m, by Lemma (3.4), A is k1-EP in 
m 

and M =            A                                    AX 

                       -G1K2
~ X~K1A               -G1K2

~ X~K1AX     

Since M is k-EP in m, by Lemma (2.7),  GM is k-EPr, where 

GM =    G1   0        A                                    AX 

              0   -I       -G1K2
~ X~K1A               -G1K2

~ X~K1AX     

      =           G1A                    G1AX 

                  G1K2
~ X~K1A       G1K2

~ X~K1AX     

Consider P =    G1AA †G1                                 G1AA†G1K1X  K2                     L  =   G1A   0 
                         K2X*K 1G1AA †G1       K2X*K 1G1AA†G1K1X  K2  ,                 0       0    , 
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Q =    A†A         A†AX                    By using (1.1) 
           X* A†A   X* A †AX 
 
P*  =   (G1AA †G1)*                              ( K2X*K 1G1AA†G1)* 
              (G1AA†G1K1X  K2)*       (K2X*K 1G1AA†G1K1X  K2)* 
 
      =     G1(AA†)*  G1                              G1( AA†)*  G1K1X  K2 
             K2X*K 1G1( AA †)*  G1       K2X*K 1G1( AA †)*  G1K1X  K2       
     
  =         G1AA†G1                              G1AA†G1K1X  K2              
              K2X*K 1G1AA †G1       K2X*K 1G1AA †G1K1X  K2      = P. 

Similarly Q* = Q can be proved.  Thus P = P* and Q = Q* and therefore P, Q are EPr.  
Since  A is k-EPr in m by Lemma (2.7) G1A is EPr and hence L is EPr.  Now 

PLQ =   G1AA †G1                            G1AA†G1K1X  K2                    G1A  0      A†A         A†AX                     

              K2X*K 1G1AA †G1     K2X*K 1G1AA†G1K1X  K2         0     0     X* A†A   X* A †AX    

        =      G1AA †G1G1A                  0          A†A         A†AX                     

                K2X*K 1G1AA†G1G1A     0         X* A†A   X* A †AX    

          =      G1A                  0          A†A         A†AX                     

                  K2X*K 1G1A     0         X* A†A   X* A †AX       

         =    G1AA †A                G1A A†AX                     

                K2X*K 1G1AA†A   K2X*K 1G1AA †AX    

          =    G1A                  G1AX                     

                K2X*K 1G1A   K2X*K 1G1AX    

           =    G1A                  G1AX                     

                G1( K1XK 2)
~A   G1( K1XK 2)

~
 AX    

          =    G1A                   G1AX                     

                G1K2
~X~K1

~A    G1K2
~X~K1

~AX    

           =    G1A                           G1AX                     

                G1K2
~X~G K1GA    G1K2

~X~G K1GAX    
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           =    G1A                       G1AX                     

                 G1K2
~X~ K1A    G1K2

~X~ K1AX    

          = GM. 

By using (1.1), M = GPLQ = (GP)(LG)(GQ).  Since P, Q, L are k-EP by Lemma (2.7), it 
follows that GP, LG, GQ are k-EP in m.  Thus k-EP matrix M in m is expressed as a 
product of k-EP matrices in m. 
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