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Abstract. Necessary and sufficient conditions for the procafdt-EP matrices of rank r
to be k-EP matrix in Minkowski spaee is derived. Also equivalent conditions for the
product of two k-EP block matrices to be k-EP astaldlished. As an application we
have shown that a block matrix in Minkowski spaae be expressed as a product of k-
EP matrices im.

Keywords: Minkowski space, Range symmetric matrices
AMS mathematics Subject Classification (2010): 15A57

1. Introduction

Throughout we shall deal with™C the space of complex n-tuples. Let G be the
Minkowski metric tensor defined by Gx =1(%X,-Xs, ....,-X))" for X = (%, %2, Xa, ..., %) [

C". Clearly the Minkowski metric matrix

1 0 5
G= G=G* andG™=l, 1.1)
0 -l

Minkowski inner product on"Os defined by (u,v) = [u,Gv], where [.,.] denotbs
conventional Hilbert space inner product. A spad# Minkowski inner product is
called a Minkowski space and denotednas With respect to the Minkowski inner
product, since

(Ax,y) = (X,ATY), A" = GA*G (1.2)

nxn

is called the Minkowski adjoint of the matrixCAl and A* is the usual Hermitian

adjoint.
(P.1) For AA O CY (Ai+A) = A+ Ay, (AA) = A A and (A7) = A,

Let A be a generalized inverse (A¥A) and A’ is the Moore Penrose of A [9].

A matrix Ais called ER if rk(A) = rand N(A) = N(A*. It is well knownthat
(p.163[1]) A is EP if and only if AA= ATA. The concept of EP matrices over the field
of complex number was introduced by Schwerdfegeherer rk(A), N(A) and R(A)
denote the rank of A, null space of A and rangesd A respectively.
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Throughout let 'k’ be a fixed prodwdtdisjoint transpositions in,$ {1,2,....n}
and K be the associated permutation matrix satigfyi
(P.2) KK=1,
(P.3) K =GK*G =GKG =K

A matrix A = (g) O C™"is k-hermitian if @= axg g fori,j = 1,2,...,n. A theory for
k-hermitian matrices is developed in [3]. The captof k-EP matrices is introduced in
[6] as a generalization of k-hermitian matrices aa@n extension of complex EP
matrices ([1]). For X = @Xa,....,%) 0 C" Iet&(X) = (X1 X2 ++-- ) 0 C".

A matrix AJ C™" is said to be k-EP if it satisfies the conditin= 0~ A*& (x) = 0
(or) equivalently N(A) = N(A*K). Moreover, A is &to be k-ERif A is k-EP and rk
(A) =r. Let k = kk, as in Lemma (2.12) of [6], wherg ks the product of disjoint
transpositions on S5 {1,2,....n} leaving (r+1,r+2,...,n) fixed and ks the product of
disjoint transpositions leaving (1,2,...,r) fixed.€rh the associated permutation matrix of
k = kik; is

K, O I, O K, O
K= = 1.3)
o I, 0 K, 0 K,
K, O I, O
where and
0 I, 0 K,

are the permutation matrices corresponding tordmespositions kand k respectively.
For further properties of k-EP matrices one magn§s]. Let us partition the Minkowski
metric tensor G of order n in conformity with thdtK in (1.3) as

G 0
G =( Ol | j where Gis the Minkowski metric tensor of order as thaof

n-r

In [5] the concept of range symmetridnman Minkowski spacen is introduced
and developed analogous to that of EP matrices.&kibmald C" is said to be range
symmetric matrix inn = N(A) = N(A"). In our earlier work [7], we have introduced the
concept of k-EP matrices in Minkowski space as»arsion of EP matrix im. In this
paper we have introduced the product of two k-ERings inm of rank r to be k-EP im
and k-EP block matrices in.

2. Preliminaries
Lemma2.1. Let A and B be matrices . Then N(A*)O N(B*) = N(A") O N(B").

Theorem 2.2. [4] For A,B,C0 C™", the following are equivalent:
(1) CAB is invariant for every ALJ] C™"
(2) N(A) O N(C) and N(A%) T N(B*)
(3) C =CAA and B = AAB for every AC{1}
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N A B
Definition 2.3.[4] Let M = (2.1)
C D

be an nxn matrix. A generalized schur compleroéAtin M denoted by M/A is
defined as D-CA, where Ais a generalized inverse of A.

If CAB is invariant for all choice of g inverse of A,eth this reduces to the Schur
complement M/A = D-CAB,where A the Moore Penrose inverse of A is the unique
solution of the equations AA =A, ATAAT = AT AAT and A'A are Hermitian.

Hence forth we are concerned witktnmrmatrices M partitioned in the form (2.1) with
rk(M) =rk(A) =r

It is well known that [2] M of the forn2(1) satisfies N(A)OO N(C) = C = YA =
CAA similarly N(A*) O N(B*) = B = AX = AAB and D = CAB = YAX. Hence (2.1)
can be written as

V= A AX
YA YAX

Definition 2.4. [7] A matrix A0 C™", is said to be k-EP inm if and only if N(A) =
N(AK).

Lemma 2.5. [6] For AL C™" , the following are equivalent:
(1) Ais k-EP

(2) KA is EP

(3) AK is EP

(4) KATA = AATK

Remark 2.6. In particular, when k(i) = i for each i,j = 1 tq then K = | and above
Theorem reduces to'A = AAT which implies that A is an EP matrix ([1], p-163)

Lemma 2.7. [7] For AL C™" , the following are equivalent:
(1) Ais k-EP inm

(2) GA is k-EP

(3) AG is k-EP

Theorem 2.8. [8] Let M be of the form (2.1), with rk(M) = rk(A) =then M is k-EP
matrix inm with k = kik, < A is ki-EP in m and CAK; = -G,(A"BK»)”

3. Product of k-EP matricesin Minkowski space:

In this section we have obtained necessary andciwuft conditions for the product of
two k-EP matrices im of rank r to be k-EP im. Later we have extended the result to k-
EP block matrices inn.
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Theorem 3.1. Let A and B be k-EP matricesanof rank r and AB be of rank r. Then AB
is k-EP matrix inm of rank r if and only if N(A) = N(B).
Proof: AB is k-EP matrix inm of rank r

=N(AB) = N(AB) K (by Definition 2.4)
=N(B) = N(B'A) K, since rk(B) = rk(AB) =r yiP.1)

=N(B) O N(AK)

=N(B) O N(A) (by Definition 2.4)

=N(B) = N(A), since rk(A) =rk(B) =r
Conversely,
Let N(A) = N(B). To prove that AB is k-ER in. Clearly N(AB)O N(B). Since
rk(AB) = rk(B) = r, we get
N(AB) = N(B) (3.1)
N((AB)K) = N(B'A") K O N(AK) = N(A) (by Defimitn 2.4)
Now N(A) = N(A'K) = rk(AK) =rk(A) =r
N(B) =N(B'K) = rk(B'K) = rk(B) =r
N((AB)'K) O N(A)
rk(AB) "K = rk(AB)” = rk(AB) =r
N((AB) K) = N(A), since rk(A) =r (3.2)
From (3.1) and (3.2) we get
N(AB) = N(AB)K, since N(A) = N(B)
Thus AB is k-EP inn.

Theorem 3.2. Let A, B and AB be k-EP matrices i of rank r and BA is of rank r, then

BA is k-EP matrix inm.

Proof: Let A, B and AB be k-EP matricesanand rk(AB) = rk(A) =rk(B) =r

We claim BA is k-EPin m.

N(BA) O N(A)

rk(BA) = rk(A) =r

Therefore N(BA) = N(A) (3.3)
N(AB) O N(B)

rk(AB) =rk(B) =r

Therefore N(AB) = N(B) (3.4)
by Theorem (3.1),N(A) = N(B)
Therefore N(BA) = N(AB) (3.5)

Also N(BA)'K = N(A"B")K T N(B'K) = N(B)

N(BA) K 0O N(B) = N(AB)

N(BA) K O N(AB)

rk(BA) K =rk (BA) = rk(BA) = rk(A) =r

N(BA)'K = N(AB) (3.6)
From (3.5) and (3.6) it follows that N(BA) = N(BA

Therefore BA is k-EPmatrix inm.

Lemma 3.3. For complex matrices A and B , N(A*K)l N(B*K) if and only if N(A'K)
ON(BK)

32



Product of k-EP Block Matrices in Minkowski Space

Proof: Let us assume that N(A*K) N(B*K) we need to prove N(A) ON(B"K)
Let us chooseXN(AK) => A'Kx =0

= GA*GKx =0

=A*GKx =0

=>A*KKGKx =0 (by P.2)
= A*Ky = 0, where y = KGKX, and hence Ky = GKx
=y N(A*K) 0O N(B*K)

=B*Ky =0

=B*GKx =0

=GB*GKx =0

=B Kx=0

= xON(B'K)

Thus N(AK) ON(BK).

Conversely, let us assume that NKA ON(BK).

We need to prove that N(A*K)IN(B*K)

Let us chooseXN(A*K) = A*Kx =0

= GA*GGKx =0

=AGKx =0

=A" Ky =0, where y = KGKx

=y O N(A'K) ON(BK).

=B Ky=0

=GB*GKy =0

=GB*GGKx =0

=B*Kx=0

= XON(B*K)

Thus N(A*K) ON(B*K). Hence the result.

Lemma 3.4. Let M be of the form (2.1) be k-EPaawith k = kik, A is ki-EP in m and
there exists arx(n-r) matrix X such that

M = A AX

-GK,~ X~ KA -GK,~ X~ K AX
Proof: Since M is of the form (2.1) by using Lemma 3.31 arheorem2.2, M satisfy
N(A) O N(C), N(A*) O N(B*) = N(A*K,) O N(B*K;) = N(A'K;) ON(B'Ky) and D =
CA'B. Hence there exist (n-Br matrix Y and rx (n-r) matrix X such that C = YA and
B=AX. Since A is kK-EP in m by using Lemma (2.7) and Remark (2.6)(3fA is EP
(KlG]_A)( KlG]_A) T= (KlGlA) T(KlGlA)
KiGIAA 'GK, = A'GK; KiGiA,, since G= Gy, Ky = K,

=A'A (by (1.1) & (P.2)) (3.7)
CA'K; = -G,K;, (A'B)” (by Theorem 2.8)
CA" =-G, K, (A'B)K;
=-GK, (ATAX) K, (by B = AAB = AX)
= -G Ky X (A'A) K, (by (P.1))

=-GKy X G (A'AG Ky (by (1.2))
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CA =-G Ky X KAAT (by (3.7))
C =CAA=-G, K, X K,AATA (since N(AN(C))
Therefore C = -@K,"X™ K;A and D = CAB = -G, K,” X™ K;AATAX
= 'Q(2~)(~ K]_AX

Thus
M = A AX
-GK,~ X~ KA -GK,~ X~ K AX

Theorem 3.5.

A B F U . .
Let M = and L= , be k-EP inm with k = kk, both of the form
C D H K

(2.1) and ML be of rank r, then the following amuivalent
(i) ML is k-EP inm with k= kik;
(i) AF is ky-EP inm CA'= HF
(iii) AF is ky-EP inm A'B= F'U

Proof: Since M and L are of the form (2.1) by Lemma (3h€re exists x(n-r) matrices
X and Y such that

M= A AX N
-, X'KLA -GK, X"K;AX
- /
L= ( F FY N
- Y KF -K, YK FY
g J
NowML= ([ A AX F FY
-, X KA -GKy XTKAX | FGIK, Y KqF -GK5 YK FY
g
A(I-XGK,™Y Ky)F A(I-XGK5Y K)FY

@G X KA (I-XG 1KY K)F  -GKy™ X KiA (1-XG1K5 Y Ky)FY

AZFY

-K, XKLAZF -GK, X'KL,AZFY
where Z = I-XGK, Y K;.
Clearly, N(AZF)O N (-G\K," X "K;AZF) = N(G K, X "K,AZF),
N(AZF)" O N (AZFY)™ and the schur complement of AZF in ML is zero.r Fo
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ML/AZF = -G;K, X KJAZFY + GK, X K,AZF(AZF) '( AZF)Y

= -@K, X KAZFY+G,K, X KLAZFY =0
Hence rk(AZF) = rk(ML) =r. Thus ML is also of thierm (2.1). Since M and L are k-EP
in m. By Theorem (2.8) and Lemma(3.4), A and F arER in m. Now

-Gi(Ki(ATAX)K 5)” = -GK,  (ATAX) "GK,G (by (P.1) & (P.3))
18, (ATAX) Ky (by (P.3))
1&, X (ATA) K, (by (P.1))
16, X G; (A'A)*G 1K, (by (1.2))

18, X KK G (A'A)*G K, (by (P.2))
18, X KK G, (ATA)GK
B X KAAT (by (3.7))

Similarly it can be proved that #6,"Y "K;FF = -Gy(K4(F'FY)K,) ~. We now claim
AZF is Ik-EP in m. N(F) O N(AZF), and rk(AZF) = rk(F) = r, hence it follows(F) =
N(AZF). Also N(AK,) O N(AZF)K; and rk((AZF)K,) = rk(AZF) = rk(A) = r = rk(F),
N(A) = N(A"Ky) = N(AZF)Ky = N(F).

Thus N(AZF) = N(AZF)K. and hence AZF is()€P in m. By Lemma (2.5) and Lemma
(2.7) KiG1AZF is EPr and by using (3.7) we have

K.:G,AZF(AZF)' GK, = (AZF)' AZF (3.8)
By using (3.8) for N(AZF) = N(F), N(AZFK1=N(AK;) = N(A) we get

(AZF)(AZF)" = FF = K,G,(AZF)'AZF GK; and

(AZF)'AZF = ATA =K,G,AATG K, (3.9
Since H = -GK, Y K ;F and C = -GK, X KA.

We have

HF' = -GK, Y K.FF' (by 3.9)

= -GK, Y K1 KiGy(AZF) (AZF) GK,

-GK, YT (AZF)'(AZF)] K, (by P.2)

-GK, YT (AZF)'(AZF)]” K~ (by P.3)
-G[K1((AZF)'(AZF) YK,

Similarly by using (3.9), we have

CA" = -GK, XK, AZF(AZF) '
Therefore
CA'= HF < -GK, X K;AZF(AZF)" = -Gy[K 1((AZF)'(AZF))YK ] (3.10)
Now the proof runs as follows:
ML is k-EP inm = AZF is k-EP inm and
GiK, XKL AZF(AZF) T = GK 1((AZF)(AZF))YK 5]

o AZF is k-EP inm andCA" = HF (by 3.10)

N(AZF)=N((AZF)K,) andCA" = HF'

N(F)=N(A'Ky) = N(A) andCA" = HF'

< AFis k-EP inm andCA" = HF' (by Theorem 3.1)
< AFis k-EP inm andA'B = FU (by Theorem 2.8)
Hence the theorem.

8

8

Theorem 3.6. Let A and B be k-EP im of rank r. Then N(A) = N(B) if and only if
N(PAPK) = N(PBPK) where P is unitary in unitary space.
Proof: LetA and B be k-EP i

35



K. Bharathi
Assume N(A) = N(B)
We prove N(PARK) = N(PBPK)
xON(PAPK) « PAPKx=0
= AP Kx=0
= Ay =0 where y = KKx
= YU N (A) =N(B)
= By=0
xO N(PAPK) =« BPKx=0
= PBPKx =0
= XO N(PBPK)
Thus N(A) = N(B)=»> N(PAPK) = N(PBPK)
Conversely we assume that
N(PAPK) = N(PBPK) we claim N(A) = N(B)
XON(A) = Ax=0
= APKy=0
= PAPKy=0
= yO N (PAPK) = N(PBPK)
= PBPKy=0
=BPKy=0
= Bx=0
Thus N(PAPK) = N(PBPK) = N(A) = N(B).

Product Decomposition of k-EP matricesin m

Theorem 3.7. Let M be of the form (2.1) be k-EP i with k = kk,. Then M can be
written as a product of k-EP matricessin

Proof: Since M is of the form (2.1) and M is k-EP+ith by Lemma (3.4), A iskEP in
m

and M = A AX
- XKIA -GK, XK;AX

Since M is k-EP imn, by Lemma (2.7), GM is k-EPwhere

GM = [Gl o} A AX
0 -Ul -G, XKA -GK,” X K,AX

= @A GAX
X, X'KA GK, XK;AX
Consider P Q@A'G, GAATGK X K, L4 & O
KK . GAATG, KX*K .G AATGIK X K, |, 0 ,
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Q= (AA A'AX By using (1.1)
X* ATA - X* ATAX
P* 4 (GAATG)* (K X*K 1G,AATGy)*
(GIAATGIK X KoY (KoX*K 1GIAATGK X Kp)*
= GAAN* G, Gi(AAT)* GIK X K,
KX*K G (AAD* G, KoX*K 1Gy(AAT)* GIK X K,
= GAA'G, GAATGIK X K,
KX*K 1GIAATG, KX*K1GAATGIK XK, | = P.

Similarly Q* = Q can be proved. Thus P = P* and Q* and therefore P, Q are EP
Since A is k-EPr im by Lemma (2.7) @A is ER and hence L is EP Now

PLQ = (GAATG, GAATGK X K, @A 0 AA A'AX
(KX*K,GAATG,  KX*K 1GIAATG K X KJ{ 0 J X* AA - X* ATAX
=( GAA'G,GA o] n A'AX
“ KX*K,GAATG,GA 0 [X*ATA X*ATAXJ

GA 0 'y AAX

KX*K ,G,A 0 xX* AA  X* ATAX

=[ GAATA GA ATAX
KX*K 1GAATA  KoX*K ,G,AA TAX
p
=l GA @AX
\_ |‘§X*K 1G1A KZX*K 1G]_Ax
e N
3 GA GAX

(GKXK) A Gi(KiXK)AX

=/C1\1A GAX N

EKXKIA GK; XK AX
~ ~

" GA @X
GLXGKGA  GKy X GKLGAX

-
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GA AX

KX KA GK; X K,AX

=GM.

By using (1.1), M = GPLQ = (GP)(LG)(GQ). Since®,L are k-EP by Lemma (2.7), it
follows that GP, LG, GQ are k-EP in. Thus k-EP matrix M inn is expressed as a
product of k-EP matrices .
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