Intern. J. Fuzzy Mathematical Archive Vol. 5, No. 2, 2014, 89-94 ISSN: 2320–3242 (P), 2320–3250 (online) Published on 20 December 2014 www.researchmathsci.org

Secondary κ-Kernel Symmetric Fuzzy Matrices

D.Jaya Shree

Department of Mathematics, Amrita Vishwa Vidyapeetham, Amrita University Bangalore – 560035, India. E-mail: jayashreekce@gmail.com

Abstract. In this paper, characterizations of secondary κ - kernel symmetric fuzzy matrices are obtained. Relation between s- κ - kernel symmetric, s- kernel symmetric, κ - kernel symmetric and kernel symmetric matrices are discussed. Necessary and sufficient conditions are determined for a matrix to be s- κ - kernel symmetric.

Keywords: Fuzzy matrices, kernel symmetric, s-ĸ- kernel symmetric

AMS Mathematics Subject Classification (2010): 15B15, 15B57

1. Introduction

All matrices considered in this paper are fuzzy matrices, that is, matrices over a fuzzy algebra \mathcal{F} with support [0, 1] under max-min operations. A fuzzy matrix A is range symmetric if $R(A) = R(A^T)$ and kernel symmetric if $N(A) = N(A^T)$. It is well known that for complex matrix, the concept of range and kernel symmetric are same. However this fails for fuzzy matrices. This motivated us to study on s- κ - kernel symmetric matrices. Lee [1] has initiated the study of secondary symmetric matrices, that is matrices whose entries are symmetric about the secondary diagonal. Cantoni and Paul [2] have studied persymmetric matrices, that is matrices which are symmetric about both the diagonals and their applications to communication theory. Hill and Waters [3] have developed a theory of κ -real and κ -hermitian matrices as a generalization of s-real and s-hermitian matrices. A development of κ - kernel symmetric fuzzy matrices is made by Meenakshi and Jayashree [5] analogous to that of k-real and k-hermitian of a complex matrix [3].

Throughout let κ -be a fixed product of disjoint transpositions in $S_n = \{1, 2, ..., n\}$ and K be the associated permutation matrix. A matrix $A=(a_{ij}) \in \mathcal{F}_n$ is κ -symmetric if $a_{ij} = a_{k(j)k(i)}$ for i, j = 1 to n. Meenakshi and krishnamoorthy[6] have introduced the concept of s-k hermitian matrices as a generalization of secondary hermitian and hermitian matrices. In this paper, we extend the concept of s- κ -kernel symmetric fuzzy matrices as a particular case of the results on complex matrices found in [7].

2. Preliminaries

Throughout let V' be the permutation matrix with units in its secondary diagonal and let ' κ ' be a fixed product of disjoint transpositions in $S_n = \{1, 2, ..., n\}$ and K be the

Jaya Shree

associated permutation matrix. For $x = (x_1, x_2, ..., x_n)^T \in \mathcal{F}_{n1}$ let us define the function $\Re(x) = (x_{\kappa(1)}, x_{\kappa(2)}, ..., x_{\kappa(n)})^T \in \mathcal{F}_{n1}$. Since K is involutory, it can be verified that the associated permutation matrix satisfy the following properties. (P.2.1) $KK^T = K^T K = I_n, K = K^T, K^2 = I$ and $\Re(x) = Kx$ By the definition of V, (P.2.2) $V = V^T, VV^T = V^T V = I_n$ and $V^2 = I$ (P.2.3) N(A) = N(AV), N(A) = N(AK)(P.2.4) $(AV)^T = VA^T, (VA)^T = A^T V$ If A^+ exists, then (P.2.5) $(AV)^+ = VA^+, (VA)^+ = A^+V$

Definition 2.1. [4] $A \in \mathcal{F}_n$ is kernel symmetric matrix if and only if $N(A) = N(A^T)$.

Lemma 2.1. [[4] P. 119] For $A \in \mathcal{F}_n$ and a permutation matrix P, N(A) = N(B) if and only if $N(PAP^T) = N(PBP^T)$.

Lemma 2.2. [5] A matrix $A \in \mathcal{F}_n$ is κ -kernel symmetric $\Leftrightarrow KA$ is kernel symmetric $\Leftrightarrow AK$ is kernel symmetric.

3. Secondary ĸ-kernel symmetric fuzzy matrices

Definition 3.1. A matrix $A \in \mathcal{F}_n$ is s-symmetric if and only if $A = VA^T V$.

Definition 3.2. A matrix $A \in \mathcal{F}_n$ is s-kernel symmetric if $N(A) = N(VA^TV)$.

Definition 3.3. A matrix $A \in \mathcal{F}_n$ is s- κ -kernel symmetric if $N(A) = N(KVA^TVK)$.

Lemma 3.1. A matrix $A \in \mathcal{F}_n$ is s-kernel symmetric $\Leftrightarrow VA$ is kernel symmetric $\Leftrightarrow AV$ is kernel symmetric.

Proof.

A is s-kernel symmetric	$\Leftrightarrow N(A) = N(VA^T V)$	[By Definition 3.2]
	$\Leftrightarrow N(AV) = N((AV)^T)$	[By P.2.2]
	$\Leftrightarrow AV$ is kernel symmetric	
	$\Leftrightarrow N(VAVV^{T}) = N(VVA^{T}V)$	[By Lemme2.1]
	$\Leftrightarrow N(VA) = N((VA)^T)$	[By P.2.2]
	$\Leftrightarrow VA$ is kernel symmetric.	

Remark 3.1. In particular when $\kappa(i) = i$ for i = 1, 2, ..., n then the associated permutation matrix K reduces to the identity matrix and Definition (3.3) reduces to $N(A) = N(VA^TV)$ which implies that A is s-kernel symmetric matrices.

Secondary ĸ-kernel Symmetric Fuzzy Matrices

Remark 3.2. For $\kappa(i) = n - i + 1$, the corresponding permutation matrix K reduces to V and Definition (3.3) reduces to $N(A) = N(A^T)$ which implies that A is kernel symmetric.

Remark 3.3. We note that s- κ -symmetric matrix is s- κ -kernel symmetric for if A is s- κ -symmetric then $A = KVA^TVK$ Hence $N(A) = N(KVA^TVK)$ which implies that A is s- κ -kernel symmetric. However the converse need not be true. This is illustrated in the following example.

Example 3.1. For
$$\kappa = (1,2), A = \begin{bmatrix} 1 & 0.6 \\ 0.6 & 0.5 \end{bmatrix}$$
 is symmetric

$$KVA^{T}VK = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0.6 \\ 0.6 & 0.5 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0.6 \\ 0.6 & 0.5 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0.5 & 0.6 \\ 0.6 & 1 \end{bmatrix} \neq A$$

Here $A = KA^T K$ therefore **A** is symmetric, κ -symmetric, s- κ -kernel symmetric but not s- κ -symmetric.

Example 3.2. For $\kappa = (1,2), V = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

 $A = \begin{bmatrix} 0.4 & 0.5\\ 0.5 & 0.4 \end{bmatrix}$ is symmetric, s- κ -symmetric and hence therefore s- κ -kernel symmetric.

Example 3.3. For $\kappa = (1,2)(3)$ $K = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $V = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ here $K \neq V, K \neq I$ and $KV \neq VK$. Now $A = \begin{bmatrix} 0 & 0 & 1 \\ 0.5 & 1 & 0 \\ 0.5 & 0.3 & 0 \end{bmatrix}$ is s- κ -kernel symmetric but not s- κ -symmetric. $KVA^{T}VK = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0.5 & 1 & 0 \\ 0.5 & 0.3 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ Jaya Shree

$$= \begin{bmatrix} 1 & 0.3 & 0 \\ 0 & 0 & 0.4 \\ 0.5 & 0.5 & 0 \end{bmatrix} \neq \mathbf{A}$$

Hence *A* is not s- κ -symmetric. But $N(A) = N(KVA^TVK) = \{0\}$.

Theorem 3.1. For $A \in \mathcal{F}_n$ the following are equivalent (1) \mathbf{A} is s- κ -kernel Symmetric (2) **KVA** is kernel symmetric (3) **AKV** is kernel symmetric (4) **AVK** is kernel symmetric (5) **VKA** is kernel symmetric (6) VA is κ -kernel symmetric (7) AV is κ -kernel symmetric (8) **AK** is s-kernel symmetric (9) KA is s-kernel symmetric $(10) N(A^T) = N (KVA)$ $(11) N(A) = N (KVA^T)$ **Proof:** $(1) \Leftrightarrow (4) \Leftrightarrow (5) \Leftrightarrow (9)$ $\Leftrightarrow N(A) = N(KVA^TVK)$ A is s- κ-kernel symmetric [By Definition 3.2] $\Leftrightarrow N(A) = N(KVA^T)$ [By P.2.3] $\Leftrightarrow N(AVK) = N((AVK)^T)$ \Leftrightarrow **AVK** is kernel symmetric $\Leftrightarrow (V K)(AV K)(V K)^T$ is kernel symmetric [By Lemma 2.1] \Leftrightarrow *VKA* is kernel symmetric $\Leftrightarrow KA$ is s-kernel symmetric Thus $(1) \Leftrightarrow (4) \Leftrightarrow (5) \Leftrightarrow (9)$ hold. $(2) \Leftrightarrow (6)$ *KVA* is kernel symmetric $\Leftrightarrow VA$ is κ -kernel symmetric Thus $(2) \Leftrightarrow (6)$ hold. $(2) \Leftrightarrow (10)$ $\Leftrightarrow N(KVA) = N((KVA)^T)$ **KVA** is kernel symmetric $\Leftrightarrow N(KVA) = N(A^T)$ [By P.2.3] Thus (2) \Leftrightarrow (10) hold. $(4) \Leftrightarrow (11)$ $\Leftrightarrow N(AVK) = N((AVK)^T)$ **AVK** is kernel symmetric $\Leftrightarrow N(A) = N(KVA^T)$ [By P.2.3] Thus $(4) \Leftrightarrow (11)$ hold. $(1) \Leftrightarrow (4) \Leftrightarrow (7)$ $\Leftrightarrow N(A) = N(KVA^TVK)$ A is s- κ -kernel symmetric $\Leftrightarrow N(A) = N((AVK)^T)$ $\Leftrightarrow N(AVK) = N((AVK)^T)$

Secondary ĸ-kernel Symmetric Fuzzy Matrices

 $\Leftrightarrow AVK \text{ is kernel symmetric} \\ \Leftrightarrow AV \text{ is } \kappa \text{ -kernel symmetric. Thus } (1) \Leftrightarrow (4) \Leftrightarrow (7) \text{ hold.}$

 $(3) \Leftrightarrow (8)$

AKV is kernel symmetric \Leftrightarrow **AK** is s- κ -kernel symmetric. Hence the Theorem.

In Particular for K = I, the above Theorem reduces to the equivalent condition for a matrix to be secondary kernel symmetric.

Corollary 3.1. For $A \in \mathcal{F}_n$ the following are equivalent

(1) A is s-kernel symmetric (2) VA is kernel symmetric (3) AV is kernel symmetric (4) $N(A^{T}) = N (VA)$ (5) $N (A) = N (VA^{T})$

Lemma 3.2. Let $A \in \mathcal{F}_n$, if A^+ exists $\Leftrightarrow (KA)^+$ exists $\Leftrightarrow (VKA)^+$ exists. **Proof:**

 $A^{+} \text{ exists} \Leftrightarrow (KA)^{+} \text{ exists} \qquad [\text{follows from Lemma 3.4 in [8]}]$ $\Leftrightarrow KA = (KA)(KA)^{T}(KA)$ $\Leftrightarrow VKA = (VKA)(KA)^{T}VV(KA)$ $\Leftrightarrow VKA = (VKA)(VKA)^{T}(VKA)$ $\Leftrightarrow (VKA)^{T} \in (VKA) \{1\}$ $\Leftrightarrow (VKA)^{+} \text{ exists.}$

Lemma 3.2. Let $A \in \mathcal{F}_n$, if A^+ exists $\Leftrightarrow (KA)^+$ exists $\Leftrightarrow (VKA)^+$ exists.

Proof:

 $A^{+} \text{ exists } \Leftrightarrow (\text{KA})^{+} \text{ exists} \qquad [\text{follows from Lemma 3.4 in [8]}]$ $\Leftrightarrow KA = (KA)(KA)^{T}(KA)$ $\Leftrightarrow VKA = (VKA)(KA)^{T}VV(KA)$ $\Leftrightarrow VKA = (VKA)(VKA)^{T}(VKA)$ $\Leftrightarrow (VKA)^{T} \in (VKA) \{1\}$ $\Leftrightarrow (VKA)^{+} \text{ exists.}$

Remark 3.4. For $A \in \mathcal{F}_n$, A^+ exists $\Leftrightarrow (KVA)^+$ exists.

Theorem 3.2. Let $A \in \mathcal{F}_n$. Then any two of the following conditions imply the other one.

(1) A is κ -kernel symmetric (2) A is s- κ -kernel symmetric (3) $N(A^{T}) = N((KAV)^{T})$ **Proof:** (1) and (2) \Rightarrow (3) A is s- κ -kernel symmetric $\Rightarrow N(A) = N((AV K)^{T})$ [By Theorem 3.1] Jaya Shree

	$\Rightarrow N(KAK) = N(VA^TK)$) [By Lemma 2.1]	
A is κ -kernel symmetric	$\Rightarrow N(A) = N(KA^TK)$		
	$\Rightarrow N(KAK) = N(A^T)$	[By Lemma 2.1]	
Hence (1) and (2)	$\Rightarrow N(A^T) = N((KAV)^T)$)	
Thus (3) hold.			
(1) and (3) \Rightarrow (2)			
A is κ -kernel symmetric $\Rightarrow N(KAK) = N(A^T)$			
Hence (1) and (3) $\Rightarrow N(KAK) = N((KAV)^T)$			
$\Rightarrow N$	$(A) = N(KVA^T) \qquad [B]$	y Lemma 2.1]	
	$\Rightarrow A$ is s- κ -kernel symmetric		
		[By Theorem 3.1]	
Thus (2) hold.			
(2) and (3) \Rightarrow (1)			

 $A \text{ is s-} \kappa \text{-kernel symmetric} \implies N(A) = N (KVA^T)$ $\implies N(KAK) = N (VA^TK) \quad [By \text{ Lemma 2.1}]$ Hence (2) and (3) $\implies N(KAK) = N (A^T)$ $\implies N(A) = N(KA^TK)$ $\implies A \text{ is } \kappa \text{ -kernel Symmetric}$

Thus (1) hold. Hence the theorem.

REFERENCES

- 1. A.Lee, Secondary Symmetric, Secondary Skew Symmetric, Secondary Orthogonal Matrices, *Period Math, Hungary*, 7 (1976) 63-76.
- 2. C.Antonio and B.Paul, Properties of the eigen vectors of persymmetric matrices with applications to communication theory, *IEEE Trans. Comm.*, 24 (1976) 804–809.
- 3. R.D. Hill and S.R.Waters, On k-Real and k-Hermitian matrices, *Linear Algebra and its Applications*, 169 (1992) 17-29.
- 4. AR.Meenakshi, *Fuzzy Matrix: Theory and Applications*, MJP Publishers, Chennai, 2008.
- 5. AR.Meenakshi and D.Jaya Shree, On k-kernel symmetric matrices, *International Journal of Mathematics and Mathematical Sciences*, 2009, Article ID 926217, 8 Pages.
- 6. AR.Meenakshi and S.Krishanmoorthy, On Secondary k-Hermitian matrices, *Journal* of Modern Science, 1 (2009) 70-78.
- 7. AR. Meenakshi, S.Krishnamoorthy and G.Ramesh, On s-k-EP matrices, *Journal of Intelligent System Research*, 2(2008) 93-100.
- AR.Meenakshi and D.Jaya Shree, On K-range symmetric matrices, *Proceedings of the National conference on Algebra and Graph Theory*, MS University, (2009), 58-67.