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1. Introduction 
All matrices considered  in this paper are fuzzy matrices, that is, matrices over a fuzzy 
algebra F with support [0, 1] under max-min operations. A fuzzy matrix A  is range 

symmetric if  )()( TARAR = and kernel symmetric if )()( TANAN = . It is well known 
that for complex matrix, the concept of range and kernel symmetric are same. However 
this fails for fuzzy matrices. This motivated us to study on s- κ- kernel symmetric 
matrices. Lee [1] has initiated the study of secondary symmetric matrices, that is matrices 
whose entries are symmetric about the secondary diagonal. Cantoni and Paul [2] have 
studied persymmetric matrices, that is matrices which are symmetric about both the 
diagonals and their applications to communication theory. Hill and Waters [3] have 
developed a theory of  κ-real and κ-hermitian matrices as a generalization of s-real and s-
hermitian matrices. A development of κ- kernel symmetric fuzzy matrices is made by 
Meenakshi and Jayashree  [5] analogous to that of k-real and k-hermitian of a complex 
matrix [3] .  
 Throughout let κ-be a fixed product of disjoint transpositions in 

 and  be the associated permutation matrix. A matrix A=(aij)∈F n is κ-

symmetric if )()( ikjkij aa =  for i, j = 1 to n. Meenakshi and krishnamoorthy[6] have 

introduced the concept of s-k hermitian matrices as a generalization of secondary 
hermitian and hermitian matrices. In this paper, we extend the concept of  s- κ- kernel 
symmetric fuzzy matrices as a particular case of  the results on complex matrices found 
in [7]. 
 
2. Preliminaries 
Throughout let  be the permutation matrix with units in its secondary diagonal and let 
‘κ’ be a fixed product of disjoint transpositions in { }nSn ,...,2,1=  and K  be the 
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associated permutation matrix. For ( )T
nxxxx ,...,, 21= ∈Fn1  let us define the function 

 ∈Fn1. Since  is involutory, it can be verified 

that the associated permutation matrix satisfy the following properties. 
(P.2.1) IKKKIKKKK T

n
TT ==== 2,,  and ℜ Kxx =)(  

By the definition of V , 

(P.2.2)  n
TTT IVVVVVV === ,  and IV =2  

(P.2.3) )()( AVNAN = , )()( AKNAN =  

 (P.2.4)  VAVAVAAV TTTT == )(,)(  
If exists, then 

(P.2.5)  VAVAVAAV ++++ == )(,)(  

 

Definition 2.1. [4]  A ∈Fn is kernel symmetric matrix if and only if )()( TANAN = . 

 

Lemma 2.1. [[4] P. 119] For A ∈Fn and a permutation matrix,P )()( BNAN =  if and 

only if )()( TT PBPNPAPN = . 
 
Lemma 2.2. [5] A matrix A ∈Fn is κ- kernel symmetric ⇔ KA is kernel symmetric ⇔  

AK  is kernel symmetric.  
 
3. Secondary κ-kernel symmetric fuzzy matrices 
Definition 3.1. A matrix A ∈ F n is s-symmetric if and only if  VVAA T= . 

Definition 3.2. A matrix A ∈Fn is s-kernel symmetric  if )()( VVANAN T= . 

Definition 3.3. A matrix A∈F n is s- κ-kernel symmetric if )()( VKKVANAN T= . 

Lemma 3.1.  A matrix ∈F n is s-kernel symmetric ⇔  is kernel symmetric ⇔  is 
kernel symmetric. 
Proof.  

 is s-kernel symmetric   ⇔ )()( VVANAN T=    [By Definition 3.2] 

     ⇔ ))(()( TAVNAVN =   [By P.2.2] 

                     ⇔ AV  is kernel symmetric 

   ⇔ )()( VVVANVAVVN TT =   [By Lemme2.1] 

   ⇔ ))(()( TVANVAN =   [By P.2.2] 

⇔ VA is kernel symmetric.  
 

Remark 3.1. In particular when κ(i) = i for i = 1, 2, …, n then the associated permutation 
matrix  reduces to the identity matrix and Definition (3.3) reduces to 

)()( VVANAN T=  which implies that  is s-kernel symmetric matrices. 
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Remark 3.2. For κ , the corresponding permutation matrix  reduces to 

 and Definition (3.3) reduces to )()( TANAN =  which implies that  is kernel 
symmetric. 

 
Remark 3.3. We note that s- κ-symmetric matrix is s-κ-kernel symmetric for if  is s-κ-

symmetric then VKKVAA T=  Hence )()( VKKVANAN T=  which implies that  is s- 
κ -kernel symmetric. However the converse need not be true. This is illustrated in the 
following example. 

Example 3.1. For κ = (1,2), 
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= 
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Here KKAA T= therefore  is symmetric, κ -symmetric, s- κ -kernel symmetric but not 

s- κ -symmetric. 

Example 3.2. For κ = (1,2), V = 



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

01

10
 


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A is symmetric, s-κ-symmetric and hence therefore s- κ-kernel symmetric.  

Example 3.3. For κ = (1,2)(3) 
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IKVK ≠≠ ,  and VKKV ≠ .  
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A  is s- κ-kernel symmetric but not s- κ -symmetric.  
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    = 

















05.05.0

4.000

03.01

    ≠                 

Hence  is not s- κ-symmetric. But )()( VKKVANAN T= ={0}. 

Theorem 3.1. For ∈F n the following are equivalent 
(1)  is s- κ -kernel Symmetric 
(2)  is kernel symmetric 
(3)  is kernel symmetric 
(4)  is kernel symmetric 
(5)  is kernel symmetric 
(6)  is κ-kernel symmetric 
(7)  is κ -kernel symmetric 
(8) is s-kernel symmetric 
(9)  is s-kernel symmetric 
(10)  
(11)  
Proof: 
(1) ⇔ (4) ⇔ (5) ⇔ (9)  
A is s- κ-kernel symmetric  ⇔        [By Definition 3.2 ] 

 ⇔              [By P.2.3] 
⇔     
⇔  is kernel symmetric 
⇔  is kernel symmetric  

             [By Lemma 2.1] 
⇔  is kernel symmetric 
⇔  is s-kernel symmetric   

Thus (1) ⇔ (4) ⇔ (5) ⇔ (9) hold. 
(2) ⇔ (6) 

 is kernel symmetric  ⇔  is κ -kernel symmetric  
Thus (2) ⇔ (6) hold. 
(2) ⇔ (10)  

 is kernel symmetric    ⇔  

    ⇔    [By P.2.3] 
Thus (2) ⇔ (10) hold. 
(4) ⇔  (11)  

 is kernel symmetric   ⇔   

    ⇔               [By P.2.3] 
Thus (4) ⇔ (11) hold. 
(1) ⇔ (4) ⇔ (7) 

 is s- κ -kernel symmetric  ⇔  
    ⇔  

    ⇔  
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    ⇔  is kernel symmetric 
   ⇔  is κ -kernel symmetric. Thus (1) ⇔ (4) ⇔ (7) hold. 
(3) ⇔ (8) 

 is kernel symmetric ⇔  is s- κ -kernel symmetric. 
Hence the Theorem. 
In Particular for , the above Theorem reduces to the equivalent condition for a 
matrix to be secondary kernel symmetric. 
 
Corollary 3.1. For ∈Fn the following are equivalent 
(1) is s-kernel symmetric 
(2)  is kernel symmetric 
(3)  is kernel symmetric 
(4)  

(5)  
 
Lemma 3.2. Let  ∈F n, if  exists ⇔  exists ⇔  exists. 
Proof: 

  exists ⇔ (KA)  + exists       [follows from Lemma 3.4 in [8]] 
           ⇔  
  ⇔  
  ⇔  

⇔  
  ⇔  exists. 

Lemma 3.2. Let  ∈F n, if  exists ⇔  exists ⇔  exists. 

Proof: 
  exists  ⇔ (KA)  + exists        [follows from Lemma 3.4 in [8]] 
             ⇔  

  ⇔  

  ⇔  
⇔  

  ⇔  exists. 

Remark 3.4. For ∈ F n ,    exists ⇔ exists. 

Theorem 3.2. Let  ∈F n. Then any two of the following conditions imply the 
other one. 
(1)  is κ -kernel symmetric 
(2)  is s- κ -kernel symmetric 
(3)  
Proof: 
(1) and (2) ⇒ (3) 

 is s- κ -kernel symmetric   ⇒   [By Theorem 3.1] 
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    ⇒  [By Lemma 2.1] 
 is κ -kernel symmetric    ⇒  

         ⇒  [By Lemma 2.1] 
Hence (1) and (2)           ⇒  

Thus (3) hold. 
(1) and (3) ⇒ (2) 

 is κ -kernel symmetric   ⇒     
Hence (1) and (3)   ⇒            
   ⇒     [By Lemma 2.1] 

⇒  is s- κ -kernel symmetric     
            [By Theorem 3.1] 

Thus (2) hold. 
(2) and (3) ⇒ (1) 

 is s- κ-kernel symmetric   ⇒      
   ⇒       [By Lemma 2.1] 
Hence (2) and (3)   ⇒  
    ⇒    
    ⇒  is κ -kernel Symmetric 

Thus (1) hold. Hence the theorem. 
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