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1. Introduction 
Levine [7] and Jain [6] introduced strongly continuous and totally continuous functions 
respectively. Nour [9] developed the notion of totally semi continuous functions. Further 
Caldas et al [3] introduced the concept of Totally b-continuous functions. The purpose of 
the present paper is to introduce a new class of continuous functions called rg*b-totally 
continuous functions and totally rg*b-continuous functions and investigate some of their 
fundamental properties.  Relationship between this new class and other classes of 
functions are also established.  
 
2. Preliminaries  
Throughout this paper (X,τ) and (Y,σ) represents non-empty topological spaces on which 
no separation axioms are assumed unless otherwise mentioned. For a subset A of a space 
(X,τ), cl(A) and int(A) denote the closure of A and the interior of A respectively. (X,τ) 
will be replaced by X if there is no chance of confusion. We denote the family of all 
rg*b-closed sets in X by RG*BC(X,τ).  

Let us recall the following definitions which we shall require later.  
 
Definition 2.1. A subset A of a space (X, τ) is called 
 1)   a regular open set[11] if A= int (cl(A)) and a regular closed set if A= cl(int (A)) 

 2)   a b-open set [2] if A⊂ cl(int(A))∪int (cl(A)).  
3)    a regular generalized closed set (briefly, rg-closed)[10] if cl (A) ⊆ U whenever 
      A ⊆ U and U is regular open in X. 
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4)   a generalized b-closed (briefly gb-closed)[1] if bcl(A) ⊂ U whenever A ⊂ U and U 
is open.  
5) a regular generalized b-closed set (briefly rgb-closed) [8 ] if bcl(A) ⊆U whenever  
       A ⊆ U and U is regular open in X. 
6) a  regular generalized star  b- closed set (briefly rg*b-closed set)[4]  if bcl (A) ⊆ U 

whenever A ⊆U and U is rg-open in X. 
 

Definition 2.2. A function f: (X, τ) → (Y, σ) is called  
1) b-irresolute: [8] if for each b-open set V in Y,f-1(V) is b-open in X;  
2) b-continuous: [8] if for each open set V in Y,f-1(V) is b-open in X.  

3) totally continuous [6] if f −1 (V ) is clopen set in X for each open set V of Y . 
4) totally b-continuous [3] at each point of X if for each open subset V in Y containing 

f(x), there exists a b-clopen subset U in X containing x such that f(U) ⊂ V. 
5) rg*b-continuous [5 ]  if f-1(V) is  rg*b Closed in X for every closed set V in Y. 
6) rg*b-irresolute [5] if the inverse image of each  rg*b Closed set in Y is a rg*b Closed 

set  in X . 
7)  rg*b-closed [5], if the image of each closed set in X is a  rg*b Closed set in Y. 
7) rg*b-open [5], if the image of each open set in X is a  rg*b open in Y. 

 
Definition 2.3: A space (X,τ) is called 
1) an rg*b-space[4] if every rg*b-closed set is closed. 
2) a Trg*b-space[4] if every rg*b-closed set is b-closed. 
 
3.    rg*b-totally continuous functions 
In this section, a new generalization of strong continuity called rg*b-totally continuity 
which is stronger than totally continuity is defined. Furthermore, the basic properties of 
these functions are discussed. 
 
Definition 3.1. A function f : (X,τ) → (Y,σ) is said to be a rg*b-totally continuous 
function if the inverse image of every rg*b-open set of Y is clopen in X. 
 
Theorem 3.2. A bijective function f : (X,τ) → (Y,σ) is a rg*b-totally continuous function 
if and only if  the inverse image of every rg*b-closed subset of Y is clopen in X. 
Proof: Let F be any rg*b-closed set in Y. Then Y \ F is a rg*b-open set in Y. By 
definition  f -1(Y \ F) is clopen in X. That is, X \ f -1(F) is clopen in X. This implies f -1(F) 
is clopen in X. Conversely if V is rg*b-open in Y, then Y \ V is rg*b-closed in Y. By 
assumption,  f -1(Y \ V) = X \ f -1(V) is clopen in X ,which implies f -1(V) is clopen in X. 
Therefore f is rg*b-totally continuous function. 
 
Theorem 3.3. (i) Every rg*b-totally continuous function is totally continuous. 
(ii) Every rg*b-totally continuous function is rg*b-continuous. 
(iii) Every totally continuous function is rg*b-continuous. 
Proof: (i) Let U be any open subset of Y. Since every open set is rg*b-open, U is rg*b-
open in Y and f : (X,τ) → (Y,σ) is rg*b-totally continuous, it follows that f -1(U) is clopen 
in X.  
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Proof is obvious for (ii) and (iii). 
 
Remark 3.4. The converse of Theorem 3.3 is not true, which can be verified from the 
following examples. 
 
Example 3.5. (i) Let X= Y= {a,b,c},τ = {φ, {a},{b},{a,b},{b,c},X} and σ = {φ, {a},Y}. 

Let f: (X,τ) → (Y,σ) be an identity map. Then τ-closed sets are {φ, {a},{c},{a,c},{b,c}, 

X} and RG*BO(Y, σ) ={φ,{a},{a,b},{a,c},Y}. Then f is totally continuous but not rg*b-

totally continuous, since f -1({a,b}) ={a,b} is not closed in (X,τ). 

(ii) Let X = Y = {a,b,c},  τ = {φ, {a},{b},{a,b}, X} and σ = {φ, {a},Y}. Let f: (X, τ) → 

(Y,σ) be an identity map. Then τ-closed sets are {φ,{c},{a,c},{b,c}, X} and σ-closed sets 

are {φ,{b,c}, Y}. Also RG*BC(X,τ) = {φ,{a},{b},{c},{a,c},{b,c}, X} and RG*BO(Y, σ) 

= {φ,{a},{a,b}, {a,c},Y}. Then f is rg*b-continuous but not totally continuous and rg*b-
totally continuous, since f -1({a}) = {a} is not closed in (X,τ). 
 
Remark 3.6. From the above discussions the following implication diagram is obtained. 
The numbers 1-3 represents the following continuities. 
 1.  rg*b-totally continuous 2.  rg*b-continuous  3.  totally continuous. 

 
Theorem 3.7.  Let f : (X,τ) → (Y,σ) be a function, where X and Y are topological spaces. 
Then the following are equivalent: 
1. f is rg*b-totally continuous.       
2. For each x ∈ X and each rg*b-open set V in Y with f(x) ∈ V, there is a clopen set U in 
X such that x ∈ U and f(U) ⊂ V. 
Proof: (1) ⇒ (2): Suppose f is rg*b-totally continuous and V be any rg*b-open set in Y 
containing f(x) such that x ∈ f -1(V). Since f is rg*b-totally continuous, f -1(V) is clopen in 
X. Let U = f -1(V) then U is a clopen set in X and x ∈ U. Also f(U) = f(f -1(V)) ⊂ V. This 
implies f(U) ⊂ V. 
(2) ⇒ (1) : Let V be a rg*b-open set in Y. Let x∈ f -1(V) be any arbitrary point. This 
implies f(x) ∈ V. Therefore by (2) there is a clopen set Gx containing x such that f(Gx) ⊂ 
V , which implies Gx ⊂ f -1(V) is a clopen neighbourhood of x. Since x is arbitrary, it 

1

2 3
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implies f -1(V) is a clopen neighbourhood of each of its points. Hence it is a clopen set in 
X. Therefore f is rg*b-totally continuous. 
Theorem 3.8. A function f : ( X,τ) → (Y,σ) is rg*b-totally continuous, if its graph 
function is rg*b-totally continuous. 
Proof: Let g: X → X×Y be a graph function of f : X → Y .Suppose g is rg*b–totally 
continuous and F be rg*b-open in Y, then X×F is a rg*b-open set of X×Y. Since g is 
rg*b-totally continuous, g-1(X×F) = f -1(F) is clopen in X. Thus the inverse image of every 
rg*b-open set in Y is clopen in X. Therefore f is rg*b-totally continuous. 
 
Theorem 3.9. If f : (X, τ) → (Y,σ) is rg*b-totally continuous surjection and X is 
connected then Y is rg*b-connected. 
Proof: Suppose Y is not rg*b-connected, let A and B form a disconnection of Y. Then A 
and B are rg*b-open sets in Y and Y = A ∪ B where A ∩ B = φ. Also f -1(Y) = X = f -

1(A) ∪ f -1(B), where f -1(A) and f -1(B) are non empty clopen sets in X, because f is rg*b-
totally continuous. Further, f -1(A) ∩ f -1(B) = f -1(φ) = φ. This implies X is not connected, 
which is a contradiction. Hence Y is rg*b-connected. 
 
Theorem 3.10. If f : (X,τ) → (Y,σ) is rg*b-totally continuous (totally continuous), 
injective, rg*b-open function from clopen regular space X on a space Y, then Y is rg*bc- 
regular (rg*b-regular). 
Proof: Let F be a rg*b-closed (closed) set in Y and y ∉ F. Take y = f(x). Since f is rg*b-
totally continuous (totally continuous) f -1(F) is clopen in X. Let G = f -1(F), then we have 
x ∉ G. Since X is a clopen regular space, there exists disjoint open sets U and V such that 
G ⊂ U and x ∈ V. This implies F = f(G) ⊂ f(U) and y = f(x) ∈ f(V). Further, since f is 
injective and rg*b-open, f(U ∩ V) = f(φ) = φ, where f(U) and f(V) are rg*b-open in Y. 
Therefore Y is rg*bc-regular (rg*b-regular). 
 
Theorem 3.11. If f : (X,τ) → (Y,σ) is rg*b-totally continuous, rg*b-closed (closed) 
injection, and if Y is rg*bc-regular (rg*b-regular) then X is ultra regular. 
Proof: Let F be a closed set not containing x. Since f is rg*b-closed (closed) f(F) is rg*b-
closed (closed) in Y not containing f(x). Since Y is rg*bc-regular (rg*b-regular), there 
exists disjoint rg*b-open sets A and B such that f(X) ∈ A and f(F) ⊂ B which implies x ∈ 
f -1(A) and F ⊂ f -1(B) where f -1(A) and f -1(B) are clopen sets because f is rg*b-totally 
continuous. Moreover, since f is injective, f -1(A) ∩ f -1(B) = f -1(φ) = φ. Thus for a pair of 
points and a closed set not containing the points, they can be separated by clopen sets. 
Therefore X is ultra regular. 
 
Theorem 3.12. If a function f : (X,τ) → (Y,σ) is totally continuous and Y is a rg*b-space 
then f is rg*b-totally continuous. 
Proof: Let V be rg*b-open in Y. Since Y is a rg*b-space, V is open in Y. Also as f is 
totally continuous, f -1(V) is open and closed in X. Hence f -1(V) is clopen in X. Therefore 
f is rg*b-totally continuous. 
 
Theorem 3.13. (i) If f : X → Y and g: Y → Z are rg*b-totally continuous, then g◦f : X → 
Z is also rg*b-totally continuous. 
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(ii) If f : X → Y is rg*b-totally continuous and g: Y →Z is  rg*b-continuous, then g◦f :X 
→Z is totally continuous. 
Proof: Straightforward. 
 
Theorem 3.14. Let f: X → Y be a rg*b-open map and g: Y → Z be any function. If g◦f: 
X → Z is rg*b-totally continuous, then g is rg*b-irresolute. 
Proof: Let g◦f : X → Z be rg*b-totally continuous. Let V be rg*b-open set in Z. Since g◦f 
is rg*b-totally continuous, (g◦f)-1(V) = f -1(g-1(V)) is clopen in X. Since f is rg*b-open, f(f 
-1(g-1(V))) is rg*b-open in Y. Then g-1(V) is rg*b-open in Y. Hence g is rg*b-irresolute. 
 
Theorem 3.15. Let f : X → Y be rg*b-totally continuous and g: Y→ Z be any function, 
then g◦f : X →Z is rg*b-totally continuous if and only if g is rg*b-irresolute. 
Proof: Let V be a rg*b-open subset of Z. Then g-1(V) is rg*b-open in Y as g is rg*b-
irresolute. Then f -1(g-1(V)) = (g◦f)-1(V) is clopen in X. Hence g◦f : X → Z is rg*b-totally 
continuous. Conversely, let g◦f : X → Z be rg*b-totally continuous. Let V be a rg*b-open 
set in Z, then (g◦f)-1(V) = f -1(g-1(V)) is clopen in X. Since f is rg*b-totally continuous, g-
1(V) is rg*b-open in Y. Hence g is rg*b-irresolute. 
 
4  Totally rg*b-continuous functions 
In this section, the concepts of totally rg*b-continuity is introduced and characterized. 
Also some of the properties of the separation axioms, by utilizing totally rg*b-continuity 
are studied. 
 
Definition 4.1. A function f : (X,τ) → (Y,σ) is called 
(i) totally rg*b-continuous at a point x ∈ X if for each open subset V in Y containing 

f(x) , there exists a rg*b-clopen subset U in X containing x such that f(U) ⊂ V. 
(ii)  totally rg*b-continuous if it has this property at each point of X. 
 
Theorem 4.2. The following statements are equivalent for a function f : (X,τ) → (Y,σ), 
whenever the class of rg*b-closed sets in (X,τ) are closed under finite union: 
(i) f is totally rg*b-continuous. 
(ii)  For every open set V of Y, f -1(V) is rg*b-clopen in X. 
Proof: (i) ⇒ (ii): Let V be an open subset of Y and let x ∈ f -1(V). Since f(x) ∈ V, by (i), 
there exists a rg*b-clopen set Ux in X containing x such that Ux ⊂ f -1(V). We obtain f -
1(V) = ∪ {U x : x ∈ f -1(V)}. Thus f -1(V) is rg*b-clopen in X. 
(ii) ⇒ (i): Straightforward. 
 
Definition 4.3. A function f : (X,τ) → (Y,σ) is said to be strongly (rg*b)*-continuous if 
the inverse image of every rg*b-open set of (Y,σ) is rg*b-clopen in (X,τ). 
 
Theorem 4.4.  (i) Every strongly (rg*b)*-continuous function is totally rg*b-continuous. 
(ii)  Every totally rg*b-continuous function is rg*b-continuous. 
(iii) Every totally continuous function is totally rg*b-continuous. 
(iv) Every rg*b-totally continuous function is totally rg*b-continuous. 
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Proof: (i) Let V be an open set in Y. Then V is rg*b-open in Y. Then f -1(V) is rg*b-
clopen in X as f is a strongly (rg*b)*-continuous function. Hence f is totally rg*b-
continuous. 
Proof is obvious for (ii) to (iv). 
 
Remark 4.5. The converse of Theorem 4.4 is not true, which can be verified from the 
following examples. 
 
Example 4.6. (i) In Example 3.5 (ii), f is a totally rg*b-continuous and a rg*b-continuous 
function. But it is not a strongly (rg*b)*-continuous, totally continuous and rg*b-totally 
continuous function. 

(ii) Let X = Y = {a,b,c}, τ = {φ, {a},{a,b},{a,c}, X} and σ = {φ,{a},Y}. Let f: (X, τ) → 

(Y,σ) be an identity map. Then τ-closed sets are {φ,{b},{c},{b,c}, X} and σ-closed sets 

are {φ,{b,c}, Y}. Also RG*BC(X,τ) ={φ,{b},{c},{b,c},X} and RG*BO(X, τ) 

={φ,{a},{a,b}, {a,c},Y}. Then f is rg*b-continuous but not totally rg*b-continuous, since 
f -1({a}) = {a} is not rg*b-closed in (X,τ). 
 
Remark 4.7. From the above discussions the following implication diagram is obtained. 
The numbers 1-5 represents the following continuities. 
  1.  totally rg*b-continuous    2.  strongly (rg*b)*-continuous     3.  totally continuous    4.  
rg*b-totally continuous    5.  rg*b-continuous. 
 

 
 
Theorem 4.8. If f : (X,τ) → (Y,σ) is a totally rg*b-continuous map from a rg*b-
connected space (X,τ) onto a space (Y,σ), then (Y,σ) is an indiscrete space. 
Proof: On the contrary, suppose that (Y,σ) is not an indiscrete space. Let A be a proper 
non-empty open subset of (Y,σ). Since f is totally rg*b-continuous map, then f -1(A) is a 

1

2

3

4

5



New Class of rg*b-Continuous Functions in Topological Spaces 

109 

 

proper non-empty rg*b-clopen subset of X. Then X = f -1(A) ∪ (X \ f -1(A)) which is a 
contradiction to the fact that X is rg*b-connected. Therefore Y must be an indiscrete 
space. 
Theorem 4.9. Let f : (X,τ) → (Y,σ) be a totally rg*b-continuous map and Y be a T1 
space. If A is a non-empty subset of a rg*b-connected space X, then f(A) is singleton. 
Proof: Suppose if possible f(A) is not singleton, let f(x1) = y1 ∈ A and f(x2) = y2 ∈ A. 
Since y1, y2 ∈ Y and Y is a T1 space, then there exists an open set G in (Y,σ) containing 
y1 but not y2. Since f is totally rg*b-continuous, f -1(G) is a rg*b-clopen set containing x1 
but not x2. Now X = f -1(G) ∪ (X \ f -1(G)). Thus X is a union of two non-empty rg*b-open 
sets which is a contradiction. 
 
Definition 4.10. Let X be a topological space and x ∈ X. Then the set of all points y in X 
such that x and y cannot be separated by rg*b-separation of X is said to be the quasi rg*b-
component of X. 
 
Theorem 4.11. Let f : (X,τ) → (Y,σ) be a totally rg*b-continuous function from a 
topological space (X,τ) into a T1 space (Y,σ) .Then f is constant on each quasi rg*b-
component of X. 
Proof: Let x and y be two points of X that lie in the same quasi rg*b-component of X. 
Assume that f(x) = α ≠ β= f(y). Since Y is a T1 space, {α} is closed in Y and so Y \ {α}is 
an open set. Since f is totally rg*b-continuous, f -1{ α} and f -1{Y \ { α}} are disjoint rg*b-
clopen subsets of X. Further x ∈ f -1{ α} and y ∈ f -1{Y \ { α}} which is a contradiction to 
the fact that y belongs to the quasi rg*b-component of X and hence y must belong to 
every rg*b-open set containing x. 
 
Definition 4.12. A space (X,τ) is said to be  
(i) rg*b-co-T1 if for each pair of disjoint points x and y of X, there exists rg*b-clopen 
sets U and V containing x and y, respectively such that x ∈ U, y ∉ U and x ∉ V, y ∈ V. 
(ii)  rg*b-co-T2 if for each pair of disjoint points x and y of X, there exists rg*b-clopen 
sets U and V in X, respectively such that x ∈ U and y ∈ V. 
(iii)  rg*b-co-regular if for each rg*b-clopen set F and each point x ∉ F, there exists 
disjoint open sets U and V such that  F ⊂ U and x ∈ V. 
(iv) rg*b-co-normal if for any pair of disjoint rg*b-clopen subsets F1 and F2 of X, there 
exists disjoint open sets U and V such that   F1 ⊂ U and F2 ⊂ V. 
(v) rg*b-co-Hausdorff  if every two distinct points of  X can be separated by disjoint 
rg*b-clopen sets. 
 
Theorem 4.13. If f : (X, τ) → (Y,σ) is totally rg*b-continuous injective function and Y is 
a T1 space, then X is  rg*b-co-T1. 
Proof: Since Y is T1, for any distinct points x and y in X, there exists open sets V,W in Y 
such that f(x) ∈ V, f(y) ∉ V, f(x) ∉ W and f(y) ∈ W. Since f is totally rg*b-continuous, f 
-1(V) and f -1(W) are rg*b-clopen subsets of (X,τ) such that x ∈ f -1(V), y ∉ f -1(V), x ∉ f -
1(W) and y ∈ f -1(W). This shows that X is rg*b-co-T1. 
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Theorem 4.14. If f : (X,τ) → (Y,σ) is totally rg*b-continuous injective function and Y is 
a T2-space, then X is  rg*b-co-T2. 
Proof: For any distinct points x and y in X, there exists disjoint open sets U and V in Y 
such that f(x) ∈ U and f(y) ∈ V and U ∩ V = φ. Since f is totally rg*b-continuous, f -1(U) 
and f -1(V) are rg*b-clopen in X containing x and y respectively. Therefore f -1(U) ∩ f -

1(V) = φ because U ∩ V = φ. This shows that X is rg*b-co-T2. 
 
Theorem 4.15. If f : (X,τ) → (Y,σ) is totally rg*b-continuous injective open function 
from a rg*b-co-normal space X onto a space Y, then Y is normal. 
Proof: Let F1 and F2 be disjoint closed subsets of Y. Since f is totally rg*b-continuous, f -
1(F1) and f -1(F2) are rg*b-clopen sets. Take U = f -1(F1) and V = f -1(F2). We have U ∩ V 
= φ. Since X is rg*b-co-normal, there exists disjoint open sets A and B such that U ⊂ A 
and V ⊂ B. We obtain that F1 = f(U) ⊂ f(A) and F2 = f(V) ⊂ f(B) such that f(A) and f(B) 
are disjoint open sets. Thus, Y is normal. 
 
Theorem 4.16. If f : (X,τ) → (Y,σ) is totally rg*b-continuous injective open function 
from a rg*b-co-regular space X onto a space Y, then Y is regular. 
Proof: Let F be closed set in Y and y ∉ F. Take y = f(x). Since f is totally rg*b-
continuous, 
 f -1(F) is a rg*b-clopen set. Take G = f -1(F), we have x ∉ G. Since X is a rg*b-co-regular 
space there exists disjoint open sets U and V such that G ⊂ U and x ∈ V. We obtain F = 
f(G) ⊂ f(U) and y = f(x) ∈ f(V) such that f(U) and f(V) are disjoint open sets. This shows 
that Y is regular. 
 
Theorem 4.17. Let f : (X,τ) → (Y,σ) be a totally rg*b-continuous injective function. If Y 
is hausdorff, then X is rg*b-co-Hausdorff . 
Proof: Let x1 and x2 be two distinct points of X. Since f is injective and Y is Hausdorff, 
there exists open sets V1 and V2 in Y such that f(x1) ∈ V1, f(x2) ∈ V2 and V1 ∩ V2 = φ. 
By Theorem 3.2, xi ∈ f -1( Vi) ∈ rg*b-clopen(X) for i=1,2 and f -1(V1) ∩ f -1(V2) = φ. Thus 
X is rg*b-co-Hausdorff. 
 
Definition 4.18. A space X is said to be  
1. rg*b-co-compact if every rg*b-clopen cover of X has a finite subcover. 
2. rg*b-co-compact relative to X if every cover of a rg*b-clopen set of X has a finite sub 
cover. 
3. countably rg*b-co-compact if every countable cover of X by rg*b-clopen sets has a 
finite subcover. 
4. rg*b-co-Lindelof if every rg*b-clopen cover of X has a countable subcover. 

 
Theorem 4.19. Let f : (X,τ) → (Y,σ) be a totally rg*b-continuous surjective function. 
Then the following statements hold. 
1. If X is rg*b-co-Lindelof then Y is Lindelof. 
2. If X is countably rg*b-co-compact then Y is countably compact. 
3. If X is rg*b-co-compact then Y is compact. 
4. If X is countably rg*b-co-compact then Y is countably compact. 
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Proof: Let {Vα : α∈I} be an open cover of Y. Since f is totally rg*b-continuous, {f -1(Vα) 
: α∈I} is a rg*b-clopen cover of X. Since X is rg*b-co-Lindelof, there exists a countable 
subset I0 of I such that X = ∪{ V α : α∈ I0} and hence Y is Lindelof.  
Proof of 2 to 4 is similar.  
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