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1. Introduction

Levine [7] and Jain [6] introduced strongly contiag and totally continuous functions
respectively. Nour [9] developed the notion of igtaemi continuous functions. Further
Caldas et al [3] introduced the concept of TothHgontinuous functions. The purpose of
the present paper is to introduce a new class mire@us functions called rg*b-totally
continuous functions and totally rg*b-continuousdtions and investigate some of their
fundamental properties. Relationship between this new class and other etasd
functions are also established.

2. Preliminaries
Throughout this paper (X, and (Yp) represents non-empty topological spaces on which
no separation axioms are assumed unless otherveisgomed. For a subset A of a space
(X,1), cl(A) and int(A) denote the closure of A and theerior of A respectively. (X)
will be replaced by X if there is no chance of amidbn. We denote the family of all
rg*b-closed sets in X by RG*BC(X).

Let us recall the following definitions which weahrequire later.

Definition 2.1. A subset A of a space (X) is called

1) aregular open set[11] if A= int (cl(A)) aadegular closed set if A= cl(int (A))

2) ab-open set [2] if & cl(int(A))uvint (cl(A)).

3) aregular generalized closed set (brieflycloged)[10] if cl (A)S U whenever
Ac U and U is regular open in X.
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4) a generalized b-closed (briefly gb-closed){bcl(A) C U whenever AC U and U

is open.

5) aregular generalized b-closed set (briefly rgtsett) [8 ] if bcl(A) = U whenever
AC U and U isregular openin X.

6) a regular generalized star b- closed set (brigfts-closed set)[4] if bcl (A= U
whenever AU and U is rg-open in X.

Definition 2.2. A function f: (X, 1) - (Y, o) is called
1) b-irresolute: [8] if for each b-open set V in Y(¥) is b-open in X;
2) b-continuous: [8] if for each open set V in Y(¥) is b-open in X.
3) totally continuous [6] if f* (V) is clopen set in X for each open set V of Y .
4) totally b-continuous [3] at each point of X if feach open subset V in Y containing
f(X), there exists a b-clopen subset U in X corntajrx such that f(Ux V.
5) rg*b-continuous [5 ] if (V) is rg*b Closed in X for every closed set V¥n
6) rg*b-irresolute [5] if the inverse image of eacy*lr Closed set in Y is a rg*b Closed
set in X.
7) rg*b-closed [5], if the image of each closed seXiis a rg*b Closed setin Y.
7) rg*b-open [5], if the image of each open set irsX&i rg*b openin Y.

Definition 2.3: A space (X) is called
1) an rg*b-space[4] if every rg*b-closed set is clased
2) a Tgo-space[4] if every rg*b-closed set is b-closed.

3. rg*b-totally continuous functions
In this section, a new generalization of strongticwiity called rg*b-totally continuity
which is stronger than totally continuity is defihd-urthermore, the basic properties of

these functions are discussed.

Definition 3.1. A function f : (Xg) - (Y,o0) is said to be a rg*b-totally continuous
function if the inverse image of every rg*b-opeh &gy is clopenin X.

Theorem 3.2. A bijective function f: (X1) - (Y,0) is a rg*b-totally continuous function
if and only if the inverse image of every rg*b-sbul subset of Y is clopen in X.

Proof: Let F be any rg*b-closed set in Y. Then Y \ F isgib-open set in Y. By
definition (Y \ F) is clopen in X. That is, X \'{(F) is clopen in X. This implies (F)
is clopen in X. Conversely if V is rg*b-open in Yhen Y \ V is rg*b-closed in Y. By
assumption, (Y \'V) = X \ f %(V) is clopen in X ,which implies (V) is clopen in X.
Therefore f is rg*b-totally continuous function.

Theorem 3.3. (i) Every rg*b-totally continuous function is totallpetinuous.

(ii) Every rg*b-totally continuous function is rg*¥bontinuous.

(iiif) Every totally continuous function is rg*b-ctinuous.

Proof: (i) Let U be any open subset of Y. Since everynoget is rg*b-open, U is rg*b-
openinY and f: (%) - (Y,o) is rg*b-totally continuous, it follows that{U) is clopen
in X.

104



New Class of rg*b-Continuous Functions in TopoladiBpaces

Proof is obvious for (i) and (iii).

Remark 3.4. The converse of Theorem 3.3 is not true, whichlmwmerified from the
following examples.

Example 3.5. (i) Let X= Y= {a,b,c}, = {9, {a}.{b}.{a,b}.{b,c}, X} and o = {¢, {a},Y}.
Let f: (X,7) - (Y,o0) be an identity map. Thenclosed sets ared{ {a},{c}.{a,c}.{b,c},

X} and RG*BO(Y, o) ={@{a}.{a,b}.{a,c},Y}. Then fis totally continuous ht not rg*b-
totally continuous, sincef({a,b}) ={a,b} is not closed in (X).

(i) Let X =Y ={a,b,c}, 7 ={0, {a}.{b}{a,b}, X} and o ={4¢, {a},Y}. Letf: (X, 1) —
(Y,o0) be an identity map. Thenclosed sets arep{{c},{a,c},{b,c}, X} and o-closed sets

are {0,{b,c}, Y}. Also RG*BC(X, 1) = {@{a},{b},{c}.{a,c},{b,c}, X} and RG*BO(Y, o)

={o{a},{a,b}, {a,c},Y}. Then fis rg*b-continuous bunot totally continuous and rg*b-
totally continuous, sincef({a}) = {a} is not closed in (X1).

Remark 3.6. From the above discussions the following implicatitagram is obtained.
The numbers 1-3 represents the following contiasiti
1. rgb-totally continuous 2. rf@-continuous 3. totally continuous.

6‘

Theorem 3.7. Letf: (X;1) - (Y,0) be a function, where X and Y are topological gzac
Then the following are equivalent:

1. fis rg*b-totally continuous.

2. For each 1 X and each rg*b-open set V in Y with f(X) V, there is a clopen set U in
X such that XxJ U and f(U)O V.

Proof: (1) = (2): Suppose f is rg*b-totally continuous and Vawey rg*b-open set in Y
containing f(x) such that K f (V). Since f is rg*b-totally continuous, (V) is clopen in
X. Let U = (V) then U is a clopen set in X andXU. Also f(U) = f(f *(V)) O V. This
implies f(U)O V.

(2) = (1) : Let V be a rg*b-open set in Y. LeflX (V) be any arbitrary point. This
implies f(x) O V. Therefore by (2) there is a clopen sgtoBntaining x such that f(O
V , which implies GO f (V) is a clopen neighbourhood of x. Since x is taby, it
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implies f(V) is a clopen neighbourhood of each of its poiktence it is a clopen set in
X. Therefore f is rg*b-totally continuous.

Theorem 3.8. A function f : ( Xg) - (Y,0) is rg*b-totally continuous, if its graph
function is rg*b-totally continuous.

Proof: Let g: X - XxY be a graph function of f : Xo Y .Suppose g is rg*b—totally
continuous and F be rg*b-open in Y, then XxF igythropen set of XxY. Since g is
rg*b-totally continuous, §(XxF) = f (F) is clopen in X. Thus the inverse image of every
rg*b-open set in Y is clopen in X. Therefore f igl-totally continuous.

Theorem 39. If f: (X,1) - (Y,0) is rg*b-totally continuous surjection and X is
connected then Y is rg*b-connected.

Proof: Suppose Y is not rg*b-connected, let A and B farlisconnection of Y. Then A
and B are rg*b-open sets in Y and Y =[AB where An B =@. Also f(Y) = X =f~
YA) O f(B), where f'(A) and f(B) are non empty clopen sets in X, because ftis-rg
totally continuous. Further, %A) n f (B) = f (¢) = ¢. This implies X is not connected,
which is a contradiction. Hence Y is rg*b-connected

Theorem 3.10. If f : (X,7) - (Y,0) is rg*b-totally continuous (totally continuous),
injective, rg*b-open function from clopen regulgase X on a space Y, then Y is rg*bc-
regular (rg*b-regular).

Proof: Let F be a rg*b-closed (closed) set in Y and ¥. Take y = f(x). Since f is rg*b-
totally continuous (totally continuous)'{F) is clopen in X. Let G = f(F), then we have
x O G. Since X is a clopen regular space, there edisjsint open sets U and V such that
G O U and xO V. This implies F = (G f(U) and y = f(x)O f(V). Further, since fis
injective and rg*b-open, f(Lh V) = f(@) = ¢, where f(U) and f(V) are rg*b-open in Y.
Therefore Y is rg*bc-regular (rg*b-regular).

Theorem 3.11. If f : (X,1) - (Y,0) is rg*b-totally continuous, rg*b-closed (closed)
injection, and if Y is rg*bc-regular (rg*b-regulahen X is ultra regular.

Proof: Let F be a closed set not containing x. Sincer§iib-closed (closed) f(F) is rg*b-
closed (closed) in Y not containing f(x). Since ¥ rg*bc-regular (rg*b-regular), there
exists disjoint rg*b-open sets A and B such th&) fl A and f(F)d B which implies X0

f *(A) and FO f (B) where f*(A) and f*(B) are clopen sets because f is rg*b-totally
continuous. Moreover, since f is injective’(®) n f *(B) = f (¢) = ¢. Thus for a pair of
points and a closed set not containing the pothtsy can be separated by clopen sets.
Therefore X is ultra regular.

Theorem 3.12. If a function f : (Xz) - (Y,o0) is totally continuous and Y is a rg*b-space
then f is rg*b-totally continuous.

Proof: Let V be rg*b-open in Y. Since Y is a rg*b-spaskjs open in Y. Also as f is
totally continuous, (V) is open and closed in X. Henc&(V) is clopen in X. Therefore

f is rg*b-totally continuous.

Theorem 3.13. (i) If f: X - Y and g: Y- Z are rg*b-totally continuous, thenfg X -
Z is also rg*b-totally continuous.
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(i) If f : X - Y is rg*b-totally continuous and g: ¥>Z is rg*b-continuous, therrfy:X
- Z is totally continuous.
Proof: Straightforward.

Theorem 3.14. Let f: X - Y be a rg*b-open map and g: ¥ Z be any function. If :

X - Zis rg*b-totally continuous, then g is rg*b-iraate.

Proof: Let gf : X - Z be rg*b-totally continuous. Let V be rg*b-opest n Z. Since ¢
is rg*b-totally continuous, @) (V) = f (g*(V)) is clopen in X. Since f is rg*b-open, f(f
Hg'(V))) is rg*b-open in Y. Then§V) is rg*b-open in Y. Hence g is rg*b-irresolute.

Theorem 3.15. Let f: X - Y be rg*b-totally continuous and g:-Y Z be any function,
then gf : X - Z is rg*b-totally continuous if and only if g is*Mgrirresolute.

Proof: Let V be a rg*b-open subset of Z. Thef(\j) is rg*b-open in Y as g is rg*b-
irresolute. Then f(g™(V)) = (g° (V) is clopen in X. Hence«f: X — Z is rg*b-totally
continuous. Conversely, letfg X — Z be rg*b-totally continuous. Let V be a rg*b-open
set in Z, then () (V) = f Y(g*(V)) is clopen in X. Since f is rg*b-totally contious, ¢
(V) is rg*b-open in Y. Hence g is rg*b-irresolute.

4 Totally rg*b-continuous functions

In this section, the concepts of totally rg*b-cowity is introduced and characterized.
Also some of the properties of the separation asgidmy utilizing totally rg*b-continuity
are studied.

Definition 4.1. A function f: (Xg) - (Y,0) is called

() totally rg*b-continuous at a pointx X if for each open subset V in Y containing
f(x) , there exists a rg*b-clopen subset U in Xtadming x such that f(U) V.

(i) totally rg*b-continuous if it has this propertyedch point of X.

Theorem 4.2. The following statements are equivalent for a fiorcf : (X;1) - (Y,0),
whenever the class of rg*b-closed sets i) dre closed under finite union:

() fis totally rg*b-continuous.

(i) For every open set V of Y, (V) is rg*b-clopen in X.

Proof: (i) = (ii): Let V be an open subset of Y and leflX (V). Since f(x)0 V, by (i),
there exists a rg*b-clopen sef i X containing x such that Il f (V). We obtain f
V) =0 {U,: xOf ™ V)}. Thus f (V) is rg*b-clopen in X.

(ii) = (i): Straightforward.

Definition 4.3. A function f : (Xg) — (Y,0) is said to be strongly (rg*bfontinuous if
the inverse image of every rg*b-open set ob|¥s rg*b-clopen in (Xz).

Theorem 4.4. (i) Every strongly (rg*b)-continuous function is totally rg*b-continuous.
(i) Every totally rg*b-continuous function is rg*continuous.

(iii) Every totally continuous function is totalhg*b-continuous.

(iv) Every rg*b-totally continuous function is tdarg*b-continuous.
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Proof: (i) Let V be an open set in Y. Then V is rg*b-open inThen f*(V) is rg*b-
clopen in X as f is a strongly (rg*byontinuous function. Hence f is totally rg*b-
continuous.

Proof is obvious for (ii) to (iv).

Remark 4.5. The converse of Theorem 4.4 is not true, which lmarverified from the
following examples.

Example 4.6. (i) In Example 3.5 (i), f is a totally rg*b-continuoasid a rg*b-continuous
function. But it is not a strongly (rg*brontinuous, totally continuous and rg*b-totally
continuous function.

(i) Let X =Y ={a,b,c}, T = {0, {a}.{a,b},{a,c}, X} and o = {d,{a},Y}. Let f: (X, 1) >
(Y,o0) be an identity map. Thenclosed sets ared{{b},{c},{b,c}, X} and o-closed sets
are {o,{b,c}, Y} Also RG*BC(X,1) ={q@{b}{c}{b,c},X} and RG*BO(X, 1)

={@{a},{a,b}, {a,c},Y}. Then fis rg*b-continuous bunot totally rg*b-continuous, since
f *({a}) = {a} is not rg*b-closed in (XT).

Remark 4.7. From the above discussions the following implimatdiagram is obtained.
The numbers 1-5 represents the following contiasiti

1. totally rgb-continuous 2. strongly (fg) -continuous 3. totally continuous 4.
rg b-totally continuous 5. rgg-continuous.

Theorem 4.8. If f : (X,1) - (Y,0) is a totally rg*b-continuous map from a rg*b-
connected space (,onto a space (%), then (Yg) is an indiscrete space.

Proof: On the contrary, suppose that€)is not an indiscrete space. Let A be a proper
non-empty open subset of 6, Since f is totally rg*b-continuous map, thefi(R) is a
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proper non-empty rg*b-clopen subset of X. Then X XA) O (X \ f (A)) which is a
contradiction to the fact that X is rg*b-connectdtherefore Y must be an indiscrete
space.

Theorem 4.9. Let f : (X1) - (Y,0) be a totally rg*b-continuous map and Y bea T
space. If A is a non-empty subset of a rg*b-corerbspace X, then f(A) is singleton.
Proof: Suppose if possible f(A) is not singleton, letf(x y. 0 A and (%) = y. O A.
Since y, .0 Y and Y is a T space, then there exists an open set G i) (@ntaining
y: but not y. Since fis totally rg*b-continuous,{(G) is a rg*b-clopen set containing x
but not % Now X = f (G) O (X \ f Y(G)). Thus X is a union of two non-empty rg*b-open
sets which is a contradiction.

Definition 4.10. Let X be a topological space andixX. Then the set of all points y in X
such that x and y cannot be separated by rg*b-agparof X is said to be the quasi rg*b-
component of X.

Theorem 4.11. Let f : (X1) - (Y,0) be a totally rg*b-continuous function from a
topological space (X) into a T, space (Yg) .Then f is constant on each quasi rg*b-
component of X.

Proof: Let x and y be two points of X that lie in the sauasi rg*b-component of X.
Assume that f(x) = # B=f(y). Since Y is a Tspace, €} is closed in Y and so Y \d}is

an open set. Since f is totally rg*b-continuous{ &} and f *{Y \ { a}} are disjoint rg*b-
clopen subsets of X. Furtherxf *{a} and yO f {Y \ { a}} which is a contradiction to
the fact that y belongs to the quasi rg*b-compor@nX and hence y must belong to
every rg*b-open set containing x.

Definition 4.12. A space (X) is said to be

() rg*b-co-T; if for each pair of disjoint points x and y of ¥ere exists rg*b-clopen
sets U and V containing x and y, respectively gshaebhxO U, yO U and xdO V,y O V.

(i) rg*b-co-T, if for each pair of disjoint points x and y of ¥ere exists rg*b-clopen
sets U and V in X, respectively such thaf xJ and yI V.

(iii) rg*b-co-regular if for each rg*b-clopen set F aratle point xO F, there exists
disjoint open sets U and V such that1®J and xO V.

(iv) rg*b-co-normal if for any pair of disjoint rg*b-chen subsets Fand kof X, there
exists disjoint open sets U and V such thatd B and RO V.

(v) rg*b-co-Hausdorff if every two distinct points oK can be separated by disjoint
rg*b-clopen sets.

Theorem 4.13. If f: (X,1) - (Y,0) is totally rg*b-continuous injective function andis
a T, space, then X is rg*b-corT

Proof: Since Y is T, for any distinct points x and y in X, there egispen sets VW in Y
such that f(x)J V, f(y) OV, f(x) O W and f(y)d W. Since f is totally rg*b-continuous, f
(V) and (W) are rg*b-clopen subsets of @Xsuch that xJ f *(V), y O f V), x O f~
Yw) and yO f (W). This shows that X is rg*b-co.T
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Theorem 4.14. If f: (X,1) - (Y,0) is totally rg*b-continuous injective function aivdis
a Ty-space, then X is rg*b-co,T

Proof: For any distinct points x and y in X, there exidit§oint open sets U and V in Y
such that f(x)J U and f(y)O V and Un V = @. Since f is totally rg*b-continuous; {U)
and f*(V) are rg*b-clopen in X containing x and y respeely. Therefore f'(U) n f-
Y(V) = pbecause U V = @. This shows that X is rg*b-co,T

Theorem 4.15. If f : (X,1) - (Y,0) is totally rg*b-continuous injective open funatio
from a rg*b-co-normal space X onto a space Y, tfiés normal.

Proof: Let F, and Ebe disjoint closed subsets of Y. Since f is totadf§b-continuous, f
Y(Fy) and fY(F,) are rg*b-clopen sets. Take U Z(F,) and V = f(F,). We have Un V
= @. Since X is rg*b-co-normal, there exists disjaipen sets A and B such thatUA
and VO B. We obtain that /= f(U) O f(A) and k= f(V) O f(B) such that f(A) and f(B)
are disjoint open sets. Thus, Y is normal.

Theorem 4.16. If f : (X,1) - (Y,o0) is totally rg*b-continuous injective open funatio
from a rg*b-co-regular space X onto a space Y, thémregular.

Proof: Let F be closed set in Y andy¥ F. Take y = f(x). Since f is totally rg*b-
continuous,

f 1(F) is a rg*b-clopen set. Take G Z(F), we have XJ G. Since X is a rg*b-co-regular
space there exists disjoint open sets U and V thathG0 U and xO V. We obtain F =
f(G) O f(U) and y = f(x)O f(V) such that f(U) and f(V) are disjoint opensethis shows
that Y is regular.

Theorem 4.17. Let f: (X,;1) - (Y,o0) be a totally rg*b-continuous injective functidhY
is hausdorff, then X is rg*b-co-Hausdorff .

Proof: Let x, and % be two distinct points of X. Since f is injectiaad Y is Hausdorff,
there exists open sets ¥nd W, in Y such that f() O V4, f(xo) O Vo and Vi n V, = @
By Theorem 3.2, 0 f ( V;) O rg*b-clopen(X) for i=1,2 and f(V4) n f *(V,) = ¢@. Thus
X is rg*b-co-Hausdorff.

Definition 4.18. A space X is said to be

1. rg*b-co-compact if every rg*b-clopen cover of X teafinite subcover.

2. rg*b-co-compact relative to X if every cover ofgtln-clopen set of X has a finite sub
cover.

3. countably rg*b-co-compact if every countable cogéiX by rg*b-clopen sets has a
finite subcover.

4. rg*b-co-Lindelof if every rg*b-clopen cover of X ha countable subcover.

Theorem 4.19. Let f : (X;1) - (Y,0) be a totally rg*b-continuous surjective function.
Then the following statements hold.

1. If Xis rg*b-co-Lindelof then Y is Lindelof.

2. If X'is countably rg*b-co-compact then Y is courltabompact.

3. If X'is rg*b-co-compact then Y is compact.

4. If X is countably rg*b-co-compact then Y is courliabompact.
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Proof: Let {V : all} be an open cover of Y. Since f is totally rg*batinuous, {f*(V4)

: adl} is a rg*b-clopen cover of X. Since X is rg*b-dandelof, there exists a countable
subsetdof | such that X #1{ V4 : ald lg} and hence Y is Lindelof.

Proof of 2 to 4 is similar.
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