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Abstract. Star dagger matrices is extended to indefinite inner product spaces by 
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1. Introduction 
An indefinite inner product in �� is a conjugate symmetric sesquilinear form (�, �) 
together with the regularity condition that (�, �) = 0 for all � ∈ �� only when � = 0. 
Associated with any indefinite inner product is a unique invertible Hermitian matrix J 
(called a weight) with complex entries such that (�, �) =< �, �� >, where < , > denotes 
the Euclidean inner product on �� and vice versa. We also make an additional 
assumption on �, that is �� = �, to compare our results with the Euclidean case and to 
present the results with much algebraic ease. There are two different values for dot 
product of vectors in indefinite inner product spaces. To overcome this difficulty a new 
matrix product, called indefinite matrix multiplication is introduced and some of its 
properties are investigated in [6].More precisely, the indefinite matrix product of two 
complex matrices A and B of sizes � × � and � × � respectively.is defined to be the 
matrix � ∘ � = ����. The adjoint of A, denoted as �[∗] is defined to be the 
matrix���∗��, where �∗ is the Hermitianadjoint, �� and �� are weights in the appropriate 
spaces. The aim of this manuscript is to extend star dagger matrices to indefinite inner 
product spaces by introducing the commutator of a pair of complex matrices under the 
indefinite matrix multiplication. This class of J-SD matrices includes the class of partial 
isometries. We recall the definitions and preliminary results in section 2. In section 3, we 
begin with the definition of J-SD matrices and explore some of its properties. We 
determine conditions under which indefinite matrix product, usual matrix product and 
sums of J-SD to be J-SD. In [3], the concept of EP matrices has been extended to 
indefinite matrix product as J-EP matrices. In this paper, we have obtained equivalence 
conditions for a matrix to be EP as well as J-EP in terms of its commutators. Inter 
relations between the class of bi-normal, bi-EP, bi-dagger and J-SD matrices are 
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investigated. Results available in the literature ([2], [3], [5]) are deduced as a special case. 
Partial isometry is extended to indefinite inner product space. 
 
2. Preliminaries 
Definition 2.1. Let � ∈ ��×�, � ∈ ��×�. Let �� be an arbitrary but fixed � × � complex 
matrix such that �� = ��∗ = ����. The indefinite matrix product of A and B (relative to ��) is defined as � ∘ � = ����. 
 
Remark 2.1. When �� �  �!"�#�#� matrix the product reduces to the usual product of 
matrices. It can be easily verified that with respect to the indefinite matrix product, $%�&'� ∘ �[∗]( = $%�&'�[∗] ∘ �( = $%�&(�), where as this rank property fails under the 
usual matrix multiplication. Thus the Moore-Penrose inverse of a complex matrix � exits 
over an indefinite inner product space, with respect to the indefinite matrix product and 
this is one of the main advantages of the indefinite matrix product. 
 
Definition 2.2. For � ∈ ��×�, �[∗] = ��∗� is the adjoint of �relative to �. 
 
Definition 2.3. For � ∈ ��×�, � is said to be J-invertible if there exists ) ∈ ��×� such 
that  � ∘ ) = ) ∘ � = �. 
Definition 2.4. [6] For � ∈ ��×�, a matrix ) is called the Moore-Penrose if it satisfies 
the following equations:� ∘ ) ∘ � = �, ) ∘ � ∘ ) = ), (�))[∗] = �)and ()�)[∗] = )�. 
Such an ) is denoted by �[+] and represented as �[+] = ���+��. 
 
Definition 2.5. [3] For � ∈ ��×�, �is J-EP if � ∘ �[+] = �[+] ∘ �and�is EP if ��+ =�+�. 

Thus J-EP is an extension of EP in the indefinite inner product space.In [4], 
Reverse order law in indefinite inner product space and orderings on matrices are studied 
in detail. 
 
3. Main results 
A complex matrix � ∈ ��×� is said to be a star dagger (SD) matrix, if the star of � 
commutes with the dagger of �, that is �∗�+ = �+�∗, where �∗ is the Hermitian adjoint 
and �+is the Moore-Penrose inverse of �[1]. First we extend this concept to indefinite 
inner product spaces, by introducing the commutator. 
 
Definition 3.1. For a pair of square complex matrices � and � of same order, the 
commutator of � and � with respect to � is defined by [�, �], = � ∘ � − � ∘ �. 
 
Definition 3.2.: Let � ∈ ��×�. �is said to be J-SD if [�[∗], �[+]], = 0. 
 
Remark 3.1. In particular, for � = ��, �[∗] = �∗ and �[+] = �+. Definition 3.2 of J-SD 
matrix reduces to a SD matrix. 
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Example 3.1. Let us consider � = .0 01 10and J = .0 11 00 . 

Here �� ≠ ��. 

�∗ = .0 10 10, �+ = �
23456(7∗7) ∙ �∗ = �

� .0 10 10. 

9�∗, �+: = 0. Hence � is  SD. �∗ ∘ �+ = �+��∗ = �+ ∘ �∗. Hence [�∗, �+], = 0. �[∗] ∘ �[+] = (��∗�)�'��+�( = ��∗��+� = �(�∗ ∘ �+)�. �[+] ∘ �[∗] = '��+�(�(��∗�) = ��+��∗� = �(�+ ∘ �∗)�. 
Thus � is  SD and � is J-SD. 
 

Example 3.2. Let us consider � = .1 10 00and J = .0 11 00 . 

 

For this �, �+ = �
� .1 01 00. 

�∗�+ = �
� .1 01 00 = �+ = �+�∗. 

� is SD 

�∗ ∘ �+ = ; 1 01 2= 0> ; �+ ∘ �∗ = @1 2= 01 2= 0A 

�∗ ∘ �+ ≠ �+ ∘ �∗ 
 �(�∗ ∘ �+)� ≠ �(�+ ∘ �∗)� 
Hence �[∗] ∘ �[+] ≠ �[+] ∘ �[∗] 
Thus � is SD but � is not J-SD. 
 
Theorem 3.1. For � ∈ ��×�, [�[∗], �[+]], = 0 if and only if  [�∗, �+], = 0 
Proof: [�[∗], �[+]], = 0 ⟺ �[∗] ∘ �[+] = �[+] ∘ �[∗]  (By Definition 3.1) ⟺ (��∗�)�'��+�( = '��+�(�(��∗�) (By Definition 2.2 and Definition 2.4) ⟺ �∗��+ = �+��∗ ⟺ �∗ ∘ �+ = �+ ∘ �∗    (By Definition 2.1) ⟺ [�∗, �+], = 0(By Definition 3.1). 
 
Theorem 3.2. For � ∈ ��×�, 

(i) � is J-SD ⟺ ��is SD ⟺ �� is SD. 
(ii) �� is J-SD ⟺ � is SD ⟺ �� is J-SD. 

Proof: 
 (i) � is J-SD ⟺ [�[∗], �[+]], = 0 ⟺ [�∗, �+], = 0                      (By Theorem 3.1) ⟺ �∗ ∘ �+ = �+ ∘ �∗ ⟺ �∗��+ = �+��∗ ⟺ (�∗�)'�+�( = '�+�((�∗�) 
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⟺ (��)∗(��)+ = (��)+(��)∗ ⟺ ��is SD 
If � is J-SD, then as in the above proof, � is J-SD ⟺ �∗��+ = �+��∗ ⟺ (��∗)'��+( = '��+((��∗) ⟺ (��)∗(��)+ = (��)+(��)∗ ⟺ ��is SD 
Thus equivalence in (i) holds. 

(ii)Follows from (i) by replacing � by �� and �� respectively and using �� = ��. 

Hence the theorem. 
 

Lemma 3.1. For � ∈ ��×�, the following are equivalent 
(i) �� = �� 
(ii) �[∗] = �∗ 
(iii) �[+] = �+ 

Proof: �� = �� ⟺ (��)∗ = (��)∗ ⟺ ��∗ = �∗� ⟺ �[∗] = �∗ 
Thus (i) ⟺(ii) holds. �� = �� ⟺ (��)+ = (��)+ ⟺ ��+ = �+� ⟺ �[+] = �+ 
Thus (i) ⟺ (iii) holds. 
 
Theorem 3.3. For � ∈ ��×�, if �� = ��, then � is J-SD ⟺ � is SD. 
Proof: Since �� = ��, by Lemma 3.1, �[∗] = �∗ and �[+] = �+; �∗� = ��∗ and �+� = ��+.      � is J-SD ⟺ [�[∗], �[+]], = 0 ⟺ [�∗, �+], = 0                      (By Theorem 3.1) ⟺ �∗ ∘ �+ = �+ ∘ �∗ ⟺ �∗��+ = �+��∗ ⟺ �∗�+ = �+�∗ ⟺ �is SD 
Theorem 3.4. For � ∈ ��×�, if �� = ��, then[�, �[+]], = 0 ⟺ [�, �+], = 0 ⟺[�, �+] = 0. 
Proof: The first equivalence follows from Lemma 3.1, by using �[+] = �+. 
Now, [�, �+], = 0 ⟺ � ∘ �+= �+ ∘ � ⟺ ���+=�+�� ⟺ ��+= �+� ⟺ [�, �+] = 0 
Remark 3.2. The concept of J-EP matrix introduced in [3] (refer Definition 2.5) can be 
reformulated in terms of commutator as � is J-EP ⟺ [�, �[+]], = 0. Then Theorem 3.4 
reduces to the following: 
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Corollary 3.1. (Theorem 3.7(a) of [3]): For � ∈ ��×�, if �� = ��, then �is J-EP⟺ � is 
EP. 
 
Theorem 3.5. Let �, � ∈ ��×� 

(i) If �� = ��, then (��) is SD ⟺ (� ∘ �) is J- SD. 
(ii) If �� = ��, then (��) is J-SD ⟺ (� ∘ �) is SD. 
(iii) If �� = ��and �� = ��, then (��) is SD ⟺ (��)is J-SD ⟺ (� ∘ �) is J- 

SD⟺ (� ∘ �) is SD. 

Proof: 
(i) If �� = ��, then �� = �(� ∘ �) and by Theorem 3.2(i), �� is SD ⟺ (� ∘ �) 

is J- SD. 
(ii) If �� = ��, then �� = (� ∘ �)� and by Theorem 3.2(ii), �� is J-SD ⟺ (� ∘ �) is SD. 
(iii) If �� = ��and �� = ��, then �(� ∘ �) = (� ∘ �)�. Hence by Theorem 3.3 (� ∘ �) is J- SD⟺ (� ∘ �) is SD. 

This combined with (i) and (ii), yields (iii). 
Hence the Theorem. 
 

Remark 3.3. The condition on �, that is �� = �� is essential can be seen by the 
following example: 
 
Example 3.3. 

� = .1 −11 −10, J= .−1 00 10 here �� ≠ �� 

�C = . 1 1−1 −10; ��C = .2 22 20; �+ = �
D . 1 1−1 −10 = �

D �C 

�[+] = �
D .1 −11 −10 = �

D �here�[+] ≠ �+. 

For � = .1 11 10, �� = 0 and � ∘ � = .−2 −2−2 −20 
 
Theorem 3.6. For �, � ∈ ��×�, if �� = �� and �∗ ∘ �+ = �+ ∘ �∗, then the following are 
equivalent: 

(i) 9�+�, ��+: = 0 
(ii) [�∗�, ��∗] = 0 
(iii) �∗� ∘ ��∗ is J-EP 
(iv) (� ∘ �)[+] = �[+] ∘ �[+]. 

Proof: Since �� = ��, �(�∗�) = (�∗�)�, by Corollary 3.1, �∗�ο��∗ is EP ⟺ �∗� ∘��∗is J-EP. Therefore �∗���∗is EP ⟺ �∗���∗is J-EP. By �� = ��, the condition �∗ ∘ �+ = �+ ∘ �∗reduces to �∗�+ = �+�∗. Then, equivalence of (i), (ii) and (iii) follows 
from Proposition 2 of [5] and (iii) ⟺ (iv) is precisely Theorem 3.17 of [3]. 

Hence the theorem. 
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Remark 3.4. In particular for � = �, the condition in Theorem 3.6 �� = �� and �∗ ∘�+ = �+ ∘ �∗, reduces to � is SD.9�+�, ��+: = 0,[�∗�, ��∗] = 0 and (��)+ = (�+)� 
reduces to � is bi- EP, bi-normal and bi-dagger respectively. Thus Theorem 3.6 reduces 
to Corrollary 1 of [5]. A square complex matrix � is a partial isometry if �∗ = �+;which 
is equivalent to �[∗] = �[+]. It turns out that the definition of a partial isometry carries 
over as such to indefinite inner product spaces. 
 
Corollary 3.3. If � and � are partial isometries such that �� = ��, then the following are 
equivalent: 

(i) 9�+�, ��+: = 0 
(ii) [�∗�, ��∗] = 0 
(iii) (� ∘ �)+ = �+ ∘ �+ 
(iv) (� ∘ �)is partial isometry. 

Proof: Since � and � are partial isometries �∗ = �+and �∗ = �+. In Theorem 3.6, the 
condition �∗ ∘ �+ = �+ ∘ �∗ automatically holds. 
Hence, the equivalence of (i), (ii) and (iii) follows from Theorem 3.6. 
(iii)⟺(iv): � ∘ � is partial isometry⟺ (� ∘ �)+ = (� ∘ �)∗ = (�∗ ∘ �∗) = �+ ∘ �+. 

Hence the corollary. 
 

Theorem 3.7. Let � and � be star orthogonal J-SD matrices. � + � is  J-SD ⟺'A∗ ∘ B+( + 'B∗ ∘ A+( = 'A+ ∘ B∗( + 'B+ ∘ A∗(. 
Proof: Since � and � are star orthogonal matrices, by a result of Erdelyi[2], (A + B)H =  AH + BH. � + � is  J-SD ⟺ (� + �)∗ ∘ (� + �)+ = (� + �)+ ∘ (� + �)∗ ⟺ (A∗ + B∗) ∘ (A+ + B+) = (A+ + B+) ∘ (A∗ + B∗) 

      ⟺ 'A∗ ∘ A+( + 'A∗ ∘ B+( + 'B∗ ∘ A+( + 'B∗ ∘ B+( = 'A+ ∘ A∗( + 'A+ ∘ B∗( + 'B+ ∘ A∗( + 'B+ ∘ B∗( ⟺ (�∗ ∘ �+) + 'B∗ ∘ A+( = 'A+ ∘ B∗( + 'B+ ∘ A∗( 
Hence the theorem. 
 

Remark 3.5. In particular for � = ��,Corollary 3.3 and Theorem 3.7 reduces to the 
Corollary 2 andPropostion 1 of [5] respectively. Theorem 3.7 can be extended to the sum 
of a finite number of J-SD matrices that are pairwise star orthogonal. 
 
4. Conclusion 
Investigation into various partial orderings on complex matrices with respect to the 
indefinite matrix multiplication is currently being undertaken. 

REFERENCES 

1. A.Ben Israel and  T. N.E.Greville, Generalized Inverses: Theory and Applications 
(2nd Edition), Canadian Math. Soc. Books in Mathematics, Vol. 15, Springer Verlag, 
New York, 2003. 



A.R. Meenakshi 

7 
 

2. J.Erdelyi, Partial isometrics closed under multiplication on Hilbert spaces, J. Math. 
Anal. Appl., 22 (1968) 546-551. 

3. S.Jayaraman, EP matrices in indefinite inner product spaces, Funct. Anal. Approx. 
Comput., 4(2) (2012) 23-31. 

4. S.Jayaraman, The reverse order law in  indefinite inner product spaces, 
Combinatorial Matrix Theory and Gen. Inverses of Matrices,Ravindra B.Bapat,Steve 
J.Kirkland,K.Manjunatha Prasad, Simo Puntanen- Editors, Springer New 
Delhi,India(2013) 133-141.  

5. AR.Meenakshi and C.Rajian, On sums and products of star dagger matrices, J. Ind. 
Math. Soc., 50 (1986) 149-156. 

6. K.Ramanathan, K.Kamaraj. and K.C.Sivakumar, Indefinite product of matrices and 
applications to indefinite inner product spaces, J. Anal., 12 (2004) 135-142. 


