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Abstract. In this paper, we discuss about the concept of single server feedback retrial 
queueing system with two types of service and each type consist of two essential phases 
under variant vacation policy. Customers are allowed to balk and renege at particular 
times. By using the supplementary variables method, steady state probability generating 
function for system size and orbit size are obtained. The system performance measures 
and important special cases are discussed. Numerical illustrations are analyzed to see the 
effect of system parameters. 
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1. Introduction 
Retrial queues (or queues with repeated attempts) are characterized by the phenomenon 
that an arriving customer who finds the server busy upon arrival is obliged to leave the 
service area and repeat his demand after some time. Between trials, a blocked customer 
who remains in a retrial group is said to be in orbit. Queues in which customers are 
allowed to conduct retrials have wide applications in telephone switching systems and 
computers competing to gain service from a central processing unit. There is an extensive 
literature on the retrial queues. We refer the works by Artalejo and Gomez-Corral [1] and 
Artalejo [2] as a few. In a retrial queue, an arriving customer who finds the server busy 
has to leave the system or may join into the orbit. Later, after entering into orbit the 
reneging customers may decide to go to service area or leave the system. Such queues 
model many real world situations like web access, including call centers and computer 
systems, etc. Some of the authors like, Baruah et al. [3], Wang and Li [12] and Rajadurai 
et al. [10] discussed about the concept balking and reneging. In a vacation queueing 
system, the server may not be available for a period of time due to many reasons like, 
being checked for maintenance, working at other queues, scanning for new work or 
simply taking break. This period of time, when the server is unavailable for primary 
customers is referred as a vacation. Chang and Ke [4] examined on a batch retrial model 
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with J vacations in which if orbit becomes empty, the server takes at most J vacations 
repeatedly until at least one customer appears in the orbit upon returning from a vacation. 
Using the supplementary variable technique, system characteristics are derived. Later, Ke 
and Chang [7] developed a model with the concept of retrial queueing system with 
balking and feedback.  
 The service interruptions are unavoidable phenomenon in many real life situations. In 
most of the studies, it is assumed that the server is available in the service station on a 
permanent basis and service station never fails. However, these assumptions are 
practically unrealistic. Ke and Choudhury [8] discussed about the batch arrival retrial 
queue with two phases of service under the concept of breakdown and delaying repair. 
While the server is working with any phase of service, it may breakdown at any instant 
and the service channel will fail for a short interval of time. The repair process does not 
start immediately after a breakdown and there is a delay time for repair to start. Chen et 
al. [6] studied a retrial queues with modified vacation and breakdowns. Authors like 
Choudhury et al. [5], Mokaddis et al. [9], Rajadurai et al. [11] and Wang and Li [12] 
discussed about the retrial queueing systems with the concept of breakdown and repair. 
However, no work has been down in the concept of impatient customers with two phases 
and two types of service under delaying repair. The suggested model has also potential 
application in the transfer model of an email system. In Simple Mail Transfer Protocol 
(SMTP) mail system uses to deliver the messages between mail servers for relaying. The 
results of this paper finds other applications in LAN, client-server communication, 
telephone network and software designs of various computer communications systems, 
packet switched networks, production lines and mail systems, etc. 
 
2. Description of the model 
In this paper, we consider a single server feedback retrial queueing system for impatient 
customers under variant vacation policy where subject to breakdown and delaying repair. 
Then the server provides two types of service and each types consists two essential 
phases. The detailed description of model is given as follows: 
Arrival process: New customers arrive from outside according to a Poisson process with 
rateλ. We assume that there is no waiting space and therefore if an arriving customers 
find the server free, the arrival beings his service. If an arriving customer finds the server 
being busy, vacation or breakdown, the arrivals either leave the service area with 
probability b and join pool of blocked customers called an orbit, or balk the system with 
probability 1-b. Measured from the moment when the server becomes idle, the customer 
at the head of the retrial queue competes with potential primary customers to decide 
which customer will enter service next. If a primary customer arrives first, the retrial 
customer may cancel its attempt for service and either returns to its position in the retrial 
queue with probability r or quits the system with probability 1-r. Inter-retrial times have 
an arbitrary distribution R(x) with corresponding Laplace-Stieltijes transform (LST) ( ).R t∗  
Service process: There is a single server who provides two types of service and each 
type contains two phases in succession, the first phase service (FPS) followed by the 
second phase service (SPS). If an arriving customer finds the server free, then he choose 
first type of service with probability p1or choose second type of service with probability 
p2(p1+p2 = 1). After completion of two phase service, if the customer is unsatisfied with 
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service, then he may rejoin the orbit as a feedback customer with probability p or may 
leave the system with probability q = 1 - p. The service times follow a general random 
variable on both types and both phases ( )k

iS with distribution function (d.f) ( ) ( )k
iS x and 

Laplace- Stieltijes transform (LST) ( ) ( )k
iS t∗  (for k = 1,2 (phases) and i = 1, 2(types)) . 

Vacation rule: Whenever the orbit is empty, the server leaves for a vacation of random 
length V. If no customer appears in the orbit when the server returns from a vacation, it 
leaves again for another vacation with the same length. Such pattern continues until it 
returns from a vacation to find at least one customer found in the orbit or it has already 
taken J vacations. If the orbit is empty at the end of the Jth vacation, the server remains 
idle for new arrivals in the system. At a vacation completion epoch the orbit is nonempty, 
the server waits for the customers in the orbit or new customers to arrive. The vacation 
time V has distribution function V(x) and LST ( )V t∗ . 
Breakdown process: While the server is working with any types of service, it may 
breakdown at any time and the service channel will fail for a short interval of time i.e. 
server is down for a short interval of time. The breakdowns i.e. server’s life times are 
generated by exogenous Poisson processes with rates for ( )

1
kα FPS on both types and for 

( )
2
kα SPS on both types, which we may call some sort of disaster during FPS on both types 

and SPS on both types periods respectively (k = 1,2). 
Repair process: As soon as breakdown occurs the server is sent for repair, during that 
time it stops providing service to the arriving customer and waits for repair to start, which 
we may refer to as waiting period of the server. We define the waiting time as delay time. 
The delay time ( )k

iD  of the server for kth type and i th phase of service follows with d.f.
( ) ( )k
iD y and LST ( ) ( )k

iD t∗  (for i = 1,2 and k = 1,2). The customer who was just being served 
before server breakdown waits for the remaining service to complete. The repair time 
(denoted by ( )

1
kG for FPS on both types and ( )

2
kG for SPS on both types) distributions of the 

server for both the phases of service are assumed to be arbitrarily distributed with d.f.
( )( )k
iG y and LST ( ) ( )k

iG t∗ (for i=1,2 and k=1,2 ). Various stochastic processes involved in the 
system are assumed to be independent of each other. 
 
3. System analysis 
In this section, we develop the steady state difference-differential equations for the retrial 
system by treating the elapsed retrial time, the elapsed service times, the elapsed vacation 
times, the elapsed delay times and the elapsed repair times as supplementary variables. 
Then we derive the probability generating functions (PGF) for the server states, the PGF 
for number of customers in the system and orbit. Further, we assume that(0) 0,  ( ) 1,R R= ∞ =

( )(0) 0,k
iS = ( )( ) 1,  (0) 0,  ( ) 1k

iS V V∞ = = ∞ = (for i=1,2 and k=1,2) are continuous at x=0 and
( ) ( )(0) 0, ( ) 1,k k
i iD D= ∞ = ( )(0) 0,k

iG = ( )( ) 1k
iG ∞ = (for i=1,2 and k=1,2) are continuous at y=0. In addition, 

let
0 0 0( ) ( ) ( )0 0( ), ( ), ( ), ( ), and ( )k k k
i i iR t S t V t D t G t  be elapsed retrial times, service times, vacation times, 

delay times and repair times respectively at time t.The state of system at time t can be 
described by bivariate Markov process{ }( ), ( ); 0C t N t t≥  where ( )C t  denotes the server state 
(0,1,2,…J+6) depending on the server is idle, busy on both types in FPS or SPS, delay 
time on both types in FPS or SPS, repair on both types in FPS or SPS, 1st vacation,…or 
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Jth vacation. N(t)denotes the number of customers in the orbit at time t. So that the 
function ( ) ( ) ( )( ),  ( ),  ( ),  ( ) and ( )k k k

i i ix x x y yθ µ γ η ξ are the conditional completion rates for repeated 
attempts, service, vacation, delay time and repair time respectively (for i =1,2 and k= 1,2) 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )( ) ( )
( ) , ( ) , ( ) ,  ( ) , ( ) .

1 ( ) 1 ( )1 ( ) 1 ( ) 1 ( )

k k k
k k ki i i

i i ik k k
i i i

dS x dD y dG ydR x dV x
x dx x dx x dx y dy y dy

R x V xS x D y G y
θ µ γ η ξ= = = = =

− −− − −
 

Let {tn; n = 1,2,…} be the sequence of epochs at which either a service period completion 
occurs or a vacation time ends. The sequence of random vectors ( ) ( ){ } ,  n n nZ C t N t= + +  

forms a Markov chain which is embedded in the retrial queueing system. The embedded 
Markov chain{ };  nZ n N∈  is ergodic if and only if 1ρ < , where (1 ( )) ,r R p bρ λ ϖ∗= − + +  

  ( ) ( )( )
2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1 2 2 2 2

1

( ) 1 ( ) ( ) ( ) 1 ( ) ( )i i i i i i i i
i

i

p E S E D E G E S E D E Gϖ λ α α
=

     = + + + + +      
∑  

 The following probabilities are used in sequent sections for for 0,  0,  y 0 and 0t x n≥ ≥ ≥ ≥

(i=1,2, k=1,2 and j=1,2…J). For the process{ }( ),  0 ,N t t ≥ we define the probabilities 

{ }0( ) ( ) 0, ( ) 0I t P C t N t= = =  and the probability densities  

{ } { }
{ } { }

( )0 0
11,

( ) ( )0 0 0
2 1 12, 1,

( )
2,

( , ) ( ) 0, ( ) , ( ) , ( , ) ( ) 1, ( ) , ( ) , 

( , ) ( ) 2, ( ) , ( ) , ( , , ) ( ) 3, ( ) , ( ) ( )

( , ,

k
n n

k k
n n

k
n

I x t dx P C t N t n x R t x dx P x t dx P C t N t n x S t x dx

P x t dx P C t N t n x S t x dx Q x y t dy P C t N t n y D t y dy S t x

Q x y

= = = ≤ < + = = = ≤ < +

= = = ≤ < + = = = ≤ < + =

{ } { }
{ }

( )0 0 0 0
2 2 1 11,

( ) 0 0 0
2 2 ,2,

) ( ) 4, ( ) , ( ) ( ) , ( , , ) ( ) 5, ( ) , ( ) ( ) ,

( , , ) ( ) 6, ( ) , ( ) ( ) , ( , ) ( ) 6, ( ) , ( )

k
n

k
j nn

t dy P C t N t n y D t y dy S t x R x y t dy P C t N t n y G t y dy S t x

R x y t dy P C t N t n y G t y dy S t x x t dx P C t j N t n x V t x d

= = = ≤ < + = = = = ≤ < + =

= = = ≤ < + = Ω = = + = ≤ < +{ },x

 
We assume that the stability condition is fulfilled in the sequel and so that we can set 

( ) ( ) ( ) ( ) ( ) ( )
0 0 , ,, , , , , ,lim ( ), ( ) lim ( , ),  ( ) lim ( , ), ( , ) lim ( , , ), ( , ) lim ( , , ), ( ) lim ( , ).k k k k k k

n n j n j ni n i n i n i n i n i n
t t t t t t

I I t I x I x t P x P x t Q x y dy Q x y t R x y R x y t x x t
→∞ →∞ →∞ →∞ →∞ →∞

= = = = = Ω = Ω

Steady state distribution 3.1 
By the method of supplementary variable technique, we obtain the following system of 
equations that govern the dynamics of the system behavior for (i=1,2, k=1,2 and 
j=1,2,…J) 

0 ,0

0

( ) ( )  JI x x dxλ γ
∞

= Ω∫                          (3.1)

( )
[ ( )] ( ) 0,  1      n

n

dI x
x x n

dx
λ θ ψ+ + = ≥                         (3.2)

( )
,0 ( ) ( ) ( ) ( ) ( ) ( )

,0 ,0 ,0

0

( )
[ ( )] ( ) (1 ) ( ) ( ) ( , ) , 0,

k
i k k k k k k

i i ii i i

dP x
x P x b P x y R x y dy n

dx
λ α µ λ ξ

∞

+ + + = − + =∫                     (3.3)

( )
, ( ) ( ) ( ) ( ) ( ) ( )

, , ,,
1 0

( )
[ ( )] ( )  (1 ) ( ) ( ) ( ) ( , ) ,  1,

nk
i n k k k k k k

k ii i i n i n i ni n k
k

dP x
x P x b P x b P x y R x y dy n

dx
λ α µ λ λ χ ξ

∞

−
=

+ + + = − + + ≥∑ ∫
        

(3.4)

,0
,0 ,0

( )
[ ( )] ( ) (1 ) ( ),  0,  

j
j j

d x
x x b x n

dx
λ γ λ

Ω
+ + Ω = − Ω =           (3.5)

,
, , ,

1

( )
[ ( )] ( ) (1 ) ( ) ( ),   1,

n
j n

j n j n k j n k

k

d x
x x b x b x n

dx
λ γ λ λ χ −

=

Ω
+ + Ω = − Ω + Ω ≥∑         (3.6)
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( )
,0 ( ) ( )

,0 ,0

( , )
[ ( )] ( , ) (1 ) ( , ),  0,  

k
i k k

i i i

dQ x y
y Q x y b Q x y n

dy
λ η λ+ + = − =                       (3.7)

( )
, ( ) ( ) ( )

, , ,
1

( , )
[ ( )] ( , ) (1 ) ( , ) ( , ),   1,  

nk
i n k k k

i ki n i n i n k
k

dQ x y
y Q x y b Q x y b Q x y n

dy
λ η λ λ χ −

=

+ + = − + ≥∑                     (3.8)

( )
,0 ( ) ( )

,0 ,0

( , )
[ ( )] ( , ) (1 ) ( , ),  0,  

k
i k k

i i i

dR x y
y R x y b R x y n

dy
λ ξ λ+ + = − =                       (3.9)

( )
, ( ) ( ) ( )

, , ,
1

( , )
[ ( )] ( , ) (1 ) ( , ) ( , ),   1,  

nk
i n k k k

i ki n i n i n k
k

dR x y
y R x y b R x y b R x y n

dy
λ ξ λ λ χ −

=

+ + = − + ≥∑                   (3.10) 

The steady state boundary conditions at x = 0 and y = 0 are 

(1) (2) (1) (2)
, 2 2 2 22, 2, 2, 1 2, 1

1 0 0 0 0 0

(0) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,  1 

J

n j n n n n n
j

I x x dx q P x x dx P x x dx p P x x dx P x x dx nγ µ µ µ µ
∞ ∞ ∞ ∞ ∞

− −
=

   
   = Ω + + + + ≥   
      

∑∫ ∫ ∫ ∫ ∫
 

(3.11)

( )
1 11,

0 0 0

(0) ( ) ( ) ( ) (1 ) ( ) ,  1,  k
k n n nnP p I x x dx r I x dx r I x dx nθ λ λ

∞ ∞ ∞

+ +

 
 = + + − ≥ 
  
∫ ∫ ∫                    (3.12)

( ) ( ) ( )
2, 1, 1

0

(0) ( ) ( ) ,  1,  k k k
n nP P x x dx nµ

∞

= ≥∫                       (3.13)

(1) (1) (2) (2)
2,0 2 2,0 2

1,
0 0

( ) ( ) ( ) ( ) , ,   0
(0)

0                                                                  ,    1

n
q P x x dx P x x dx n

n

µ µ
∞ ∞  

  + =  Ω =   
 

 ≥

∫ ∫                     (3.14)

1,0
,

0

( ) ( ) ,   0,  2,3...
(0)

0                            ,   1,  2,3....

j
j n

x x dx n j J

n j J

γ
∞

−


 Ω = =Ω = 

 ≥ =

∫                      (3.15)

( ) ( ) ( )
, ,( ,0) ( ),   1,  k k k

i n i i nQ x P x nα= ≥           (3.16)

( ) ( ) ( )
, ,

0

( ,0) ( , ) ( ) ,  1,  k k k
i n i n iR x Q x y y dy nη

∞

= ≥∫                       (3.17) 

The normalizing condition is 
2 2 2 2 2 2

( ) ( ) ( )
0 ,, , ,

1 0 1 1 0 1 1 0 1 1 1 00 0 0 0 0 0

( ) ( ) ( , ) ( , ) ( ) 1

J
k k k

n j ni n i n i n

n n k i n k i n k i j n

I I x dx P x dx Q x y dxdy R x y dxdy x dx

∞ ∞ ∞∞ ∞∞∞ ∞ ∞ ∞ ∞

= = = = = = = = = = = =

+ + + + + Ω =∑ ∑∑∑ ∑∑∑ ∑∑∑ ∑∑∫ ∫ ∫∫ ∫∫ (3.18) 

The steady state solution 3.2 
The probability generating function technique is used here to obtain the steady state 
solution of the retrial queueing model. To solve the above equations, we define the 
generating functions for |z| ≤ 1, for (i=1,2 and k =1,2) as follows:  

( ) ( ) ( ) ( )
,, ,

1 0 0 0

( , ) ( ) ; ( , ) ( ) ; ( , ) = ( ) ; ( , , ) ( , ) ; k k k kn n n n
n j j ni i n i i n

n n n n

I x z I x z P x z P x z x z x z Q x y z Q x y z

∞ ∞ ∞ ∞

= = = =

= = Ω Ω =∑ ∑ ∑ ∑
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( ) ( )
,

0 1

( , , ) ( , ) ;  ( )  
n

k k n n
i i n

n n

R x y z R x y z X z zχ
∞ ∞

= =

= =∑ ∑
 

Now multiplying the steady state equation and steady state boundary condition Eq. (3.2) -  
Eq. (3.17) by nz  and summing over n, (n = 0,1,2...)  

( , )
[ ( )] ( , ) 0 

I x z
x I x z

x
λ θ∂ + + =

∂
        (3.19)

( )
( ) ( ) ( ) ( ) ( )

0

( , )
[ (1 ) ( )] ( , ) ( ) ( , , ) ,  

k
k k k k ki

i i i i i
P x z

b z x P x z y R x y z dy
x

λ α µ ξ
∞

∂
+ − + + =

∂ ∫    (3.20) 

( , )
[ (1 ) ( )] ( , ) 0 

j
j

x z
b z x x z

x
λ γ

∂Ω
+ − + Ω =

∂
       (3.21) 

( )
, ( ) ( )

,
( , , )

[ (1 ) ( )] ( , , ) 0
k

i n k k
i i n

Q x y z
b z y Q x y z

y
λ η

∂
+ − + =

∂
      (3.22) 

( )
, ( ) ( )

,
( , , )

[ (1 ) ( )] ( , , ) 0     
k

i n k k
i i n

R x y z
b z y R x y z

y
λ ξ

∂
+ − + =

∂
     (3.23) 

(1) (1) (2) (2)
,0 0 2, 2 2, 2

1 10 0 0

(0, ) ( , ) ( ) (0) ( ) ( , ) ( ) ( , ) ( )

J J

j j n n
j j

I z x z x dx I pz q P x z x dx P x z x dxγ λ µ µ
∞ ∞ ∞

= =

 
 = Ω − Ω − + + + 
  

∑ ∑∫ ∫ ∫  (3.24) 

( )
01

0 0

1 (1 )
(0, ) ( , ) ( ) ( , ) ,k

k
r rz

P z p I x z x dx I x z dx I
z z

θ λ λ
∞ ∞ 

− +  = + +  
   

∫ ∫     (3.25)

( ) ( ) ( )
2 1 1

0

(0, ) ( , ) ( ) ,    k k kP z P x z x dxµ
∞

= ∫        (3.26)

( ) ( ) ( )( ,0, ) ( , ),k k k
i i iQ x z P x zα=         (3.27)

( ) ( ) ( )

0

( ,0, ) ( , , ) ( ) ,   k k k
i i iR x z Q x y z y dyη

∞

= ∫        (3.28) 

Solving the partial differential equations Eq. (3.19)-Eq. (3.23), it follows that 
( , ) (0, )[1 ( )] xI x z I z R x eλ−= −         (3.29)

( )( ) ( ) ( ) ( )( , ) (0, )[1 ( )] ,
k

ik k k A z x
i i iP x z P z S x e−= −       (3.30)

( )( , ) (0, )[1 ( )] ,  for(1 )b z x
j jx z z V x e j J−Ω = Ω − ≤ ≤       (3.31)
( ) ( ) ( ) ( )( , , ) ( ,0, )[1 ( )] ,  k k k b z y
i i iQ x y z Q x z D y e−= −       (3.32)
( ) ( ) ( ) ( )( , , ) ( ,0, )[1 ( )] ,k k k b z y
i i iR x y z R x z G y e−= −       (3.33) 

where ( ) ( )( ) ( ) ( ) ( )( ) ( ) 1 ( ) ( )     ( ) (1 ).k k k k
i i i iA z b z D b z G b z and b z b zα λ∗ ∗ = + − = −

  
 

From (3.5) we obtain, ,0 ,0( ) (0)[1 ( )]exp ,  1,2,...  bx
j jx V x j Jλ−Ω = Ω − =   (3.34) 

Multiplying with equation (3.34) by γ(x) on both sides for j = J and integrating with 

respect to x from 0 to ∞, then from (3.1) we have, 0
,0(0)

( )J

P

V b

λ
λ∗Ω = (3.35)From the 
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equations (3.34) and solving (3.15), (3.35) over the range j = J-1, J-2,..1, we get on 

simplification 0
,0 1

(0) (0, ) ,  1,2...
[ ( )]j j J j

P
z j J

V b

λ
λ∗ − +Ω = Ω = = (3.36)After make calculations substitute 

the solved equations in (3.29)-(3.33) and makes a direct calculation, then we get the 
limiting probability generating functions( , ),  ( , ),jI x z x zΩ ( )( , ),k

iP x z ( )( , ),k
iQ x z ( )( , )k

iR x z.We define the 

partial probability generating functions as, for (i=1,2 and k=1,2) 
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 ( , ) ( , , ) , ( ) ( , ) ,   ( ) ( , ) , (for 1,2... )

k k k k k k
i i i i i i
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Theorem 3.1. Under the stability condition ρ<1, the stationary distributions of the 
number of customers in the system when server being idle, busy on both types, on 
vacation, under delaying repair on both types and under repair on both types (for i=1,2,  
k = 1,2 and 1≤ j ≤ J) are given by 

( ) ( ) ( ) ( )(1) (1) (1) (1) (2) (2) (2) (2)
0 1 21 1 2 2 1 1 2 2( ) (1 ( )) ( ( ) 1) ( ) ( ) ( ) ( ) ( ) ( )I z z R I N z pz q p S A z S A z p S A z S A z Dr zλ ∗ ∗ ∗ ∗∗    = − − + + +   

    
(3.37)

( ) ( ) ( ) ( ) ( )(1) (1) (1) (1) (2) (2) (2) (2)
1 21 1 2 2 1 1 2 2( ) ( ) ( ) [(1 ) ](1 ( )) ( ) ( ) ( ) ( )Dr z z pz q R r rz R p S A z S A z p S A z S A zλ λ ∗ ∗ ∗ ∗∗ ∗  = − + + − + − +    
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Then the only point I0 is unknown, which can be determined using the normalizing 

condition. ( )
2

( ) ( ) ( )
0

1 1

(1) (1) (1) (1) (1) 1.

J
k k k

ji i i

i j

I I P Q R

= =

+ + + + + Ω =∑ ∑ Thus, by setting z = 1 in (3.37)–(3.44) 

and applying L-Hospital’s rule whenever necessary, after using the normalizing condition 
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and rearrange, we get ( )0
1

1 (1 ( ))I r R p bλ ϖ
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Theorem 3.2. Under the stability condition ρ < 1, probability generating function of 
number of customers in the system and orbit size distribution at stationary point of time is
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Proof: The probability generating function of the number of customer in the system 
(K(z)) and  the probability generating function of the number of customer in the orbit 
(H(z)) is obtained by using 

( ) ( )
2 2

( ) ( ) ( ) ( ) ( ) ( )
0 0

1 1 1 1

( ) ( ) ( ) ( ) ( ) ( ) 1 and ( ) ( ) ( ) ( ) ( ) ( ).
J J
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= = = =

= + + + + + Ω = = + + + + + Ω∑ ∑ ∑ ∑
Substituting(3.37)–(3.45) in the above results (3.46) and (3.47) can be obtained by direct 
calculation. 
 
3.1. Performance measures and special cases 
In this section, we derive system performance measures the mean number of customers in 
the orbit (Lq) and system (Ls), the mean time a customer spends in the system (Ws) and 
orbit (Wq).  

(i) The mean number of customers in the orbit (Lq) under steady state condition is 
obtained by differentiating (3.47) with respect to z and evaluating at z = 1
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(ii)  The mean number of customers in the system (Ls) under steady state condition is 

obtained by differentiating (3.46) with respect to z and evaluating at z = 1 
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(iii)  The average time a customer spends in the system (Ws) and orbit (Wq) under steady- 

state condition due to Little’s formula is,   and  s s q qL W L Wλ λ= =  

Special cases 3.1.1 
In this section, we analyze briefly some special cases of our model, which are consistent 
with the existing literature. 

Case (i): Single type and phase service, No reneging, No breakdown 
Let p1 = 1, Pr [S2 = 0] = 1, r = 0 and α1= α2= 0. Our model can be reduced to a modified 
vacation for an M/G/1 retrial queueing system with balking and feedback. The following 
result is equivalent to the result by Ke and Chang [7]. 
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Case (ii): Single type and phase service, No balking and reneging, No delaying repair. 
Let p1=1, Pr[S2=0]=1, p=0, b=r=1 and η1=η2=0. Our model can be reduced to an M/G/1 
retrial queueing system with a modified vacations and server breakdowns. In this case, 
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K(z) can be simplified and the following expression is coincided with the result in Chen 
et. al [6].  
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3.2. Numerical illustration 
In this section, we present some numerical examples using Matlab in order to illustrate 
the effect of various parameters in the system performance measures of our system where 
all retrial times, service times, vacation times and repair times are exponentially, 
Erlangianly and hyper-exponentially distributed, where exponential distribution is 

( ) , 0xf x e xνν −= > , Erlang-2 stage distribution is 2( ) , 0xf x xe xνν −= >  and hyper-exponential 

distribution is  
22( ) (1 ) .x xf x c e c eν νν ν− −= + −  We assume arbitrary values to the parameters such 

that the steady state condition is satisfied. The following figures computed various 
characteristics of our model like, probability that the server is idle I0, the mean orbit size 
Lq.For the effect of the parameters θ, b, r, γ, η1

(1)andξ1
(1)on the system performance 

measures, two and three dimensional graphs are drawn in Figure1-4. Figure1 shows that 
the idle probability I0 decreases for increasing value of the non-balking probability (b). 
Figure2 shows that the mean orbit size Lq increases for increasing value of the non-
reneging probability (r). Figure3 shows that the surface displays upwards trend as 
expected for increasing value of vacation rate γ and delaying repair rate on FTS η1

(1) 
against the idle probability I0. The mean orbit size Lqdecreases for increasing value of the 
retrial rate θ and repair rate on first type FPS ξ1

(1) is shown in Figure4. 
 
6. Conclusion 
In this paper, we have studied a single server feedback retrial queueing system with two 
types of service, under variant vacation policy, delaying repair, balking and reneging 
where the server provides each type consists of two essential phases. The probability 
generating functions of the number of customers in the system and orbit are found by 
using the supplementary variable technique. The performance measures like, the mean 
number of customers in the system/orbit, the average waiting time of customer in the 
system/orbit are obtained. The analytical results are validated with the help of numerical 
illustrations. This model finds potential application in Simple Mail Transfer Protocol 
(SMTP) to deliver the messages between mail servers and Verteiler Ensprintz Pumps 
manufacturing. 
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