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Abstract. In this Paper, a bulk arrival general bulk sendgeeeueing system with variant
threshold policies for multiple vacations undeestricted admissibility policy of arriving
batches and set up time for service is considé&adng the server is in non-vacation, the
arrivals are admitted with probability ‘whereas, with probabilitg ", they are admitted
when the server is in vacation. The server sthdsservice only if at least ‘a’ customers
are waiting in the queue, and renders the servicerding to the general bulk service
rule with minimum of ‘a’ customers and maximum bf tustomers. On completion of
service, if the queue length is less than 'a'n the server takes a vacation of type one,
repeatedly, until the queue length reaches theltloid value ‘a’. When the server returns
from a vacation of type one, if the queue lengtlatideast ‘a’, then the server takes
another vacation of type two, repeatedly, until theue length reaches the threshold
value ‘N’ (N>b >a), and serves a batch of ‘b’ customersti@rother hand, when the
server returns from a vacation of type one, ifdbeue length reaches N, then he servers
a batch of 'b' customers. The server requiresugp siehe U to start the service.
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1. Introduction

Queueing models with server vacations have beesstigated by many authors due to
their various applications in production, invent@ystem, communication  systems,
banking services, computer systems etc. Very fethais only have studied the
comparable work on the bulk queueing models conisigezariant vacation policy. It is
necessary to allow the server to take differentsypf vacations with different thershold
polices to optimize the overall cost. Lee et al9@considered a batch arrival queue
with different vacations and showed that the wagitiime distributions can be obtained
by simple iterative procedure. Lee et al (1994)lymeal M /G/1 queueing system with
N-policy and multiple vacations, using supplementariable technique. A batch arrival
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gueue with threshold was discussed by Lee et é@6jlKrishna Reddy and Anitha
(1999) studied a M/G(a,b)/1 queue with differentation polices and obtained Laplace
transform of the joint distribution of the queuadéh and the remaining service time and
the remaining vacation time depending on the sthtbe server. Ke(2003) discussed the
optimal control of a M/G/1 queueing system withveerstartup time and two types of
vacations. Madan and Choudhury (2005) discussedteh barrival queueing system,
where the server provides two stages of heterogsnservice with a modified vacation
model for aM/G/1 queueing systems. Ke (2007) used supplemeugagible technique
to study aM/G/1 queueing systems with balking under variacttians.

2. Notations
A arrival rate
X Group size random variable

gk The Probability that ‘k’ customers arrive in adfa

X(z) The Probability generating function.

S(X)  Cumulative distribution function of serviceng

Vi(x) Cumulative distribution function of vacatioftgpe one

V,(x) Cumulative distribution function of vacatiofitgpe two

U(x) Cumulative distribution function of seup time

s(x)  The probability density function of S

vi(X) The probability density function of vacatiohtype one

v,(X) The probability density function of vacatiohtype two

u(x)  The probability density function of U

$(0) Laplace -Stieltjes transform of S

V,(0) Laplace Stieltjes transform of vacation of type

V,(8) Laplace Stieltjes transform of vacation of type

U(9) Laplace -Stieltjes transform of U

S% (x) Remaining service time

V2(x) Remaining vacation time of type one vacation

V2(x) Remaining vacation time of type two vacation

U°% (x) Remaining service time of set up time

Ng(t) Number of customers in the service at time t

Ng(t) Number of customers in the queue at time t

The different states of the server at time taréindd as follows
0; if the server is busy with service

C@)= 1; ifthe serverison vacation

2; if the server is on set up time
z1(t) =j, if the server is on j th vacation of typee ;)
z%2(t) =], if the server is on j th vacation of typeo (v,)

To obtain the system equations , the followingespabbabilities are defined,;

Pi(x, )dt = P{N(t) = i, Ng(t) = j,x < S°() < x+dt, C() =0}, a<x<b,j=0,
Q' (% t)dt = P{Ng(t) = n,x < Vot < x+dt, C(t) = 1,z1(t) =}, n=0, =1,
Q%,(x,1)dt = P{Ng(t) = n,x < V,0(t) < x+dt, C(t) = 1,22(t) =}, n=a, 1,

Up(xt)dt = P{Ny(©) =n,x < U°() <x+dt, C(=2},n>a
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3. Steady state queue sizedistribution
The model is then goverened by the following sediffiérence-differential equations

—Po(X) = =AP;o(X) + M(1-0)P o (x)+ X Py (0) S(X) 4 (0) S(x), asi<b (1)
_Pl:'li(x) = —XPi_]-(X) + 7\,(1'(1) Pi,]' (X)+ o ZL=1 Pi,]'—k (X) ng, a< i < b '1, Jz 1 (2)
—Py(X) = —APy;(X) +A(1-0) Py () + Xbnca Pmpj (0)S(X) 4 Xy Pojoic (X) Agx,
1<j<N-1-b . )

—B(X) = =APy;(x) + M1 — )Py (x)+ Thica P (0)s (X) +a0 iy Poji (IAk + Upyj (0)S(X),

>N-b 4

—Qio(X) = =AQip(¥) + A (1) Qo (%) + Tr=a Po (0) vi(X) (5)

_Qll,n(x) = _lel,n(X) +A (1-‘3) Ql,n(X)+ er)n=a l:’m,n (O) Vl(x) + B Zﬂ=l Qll,n—k (X) ng!

0<n<a-l (6)

—Qjn(¥) = =AQjn(¥) +A(1 = B) Qjn(¥) + B Xk=i Qjn-k () Agx , N>a, > 1 (7)

=Qjo(¥) = =AQjo(x) +ML-B) Qjo()+ Qj-10(0IV1(X), j=2 8)

—Qjn(¥) = =AQjn(X) + MLB)Qjn () +Qj=1n (0) V1 (X) + BER=1 Qn-rc(X) X Eis

0<n<a-l,j>2 9)

Qi () = —2QF n(X) + M1B)QFn () +B Ti=1 Qfn-re(®) A gk + Tic=1 Qien (0IV2 (),

as<n<N-1 (10)

—Qfn () = —AQ5n(¥) + M1B)QFn(X) +BER=1 Q) A 8k + Q1 n(0)V2 (%) ,

as<n<N-1, j>2 (1)

—Qfn ()= —2Q5n(¥) + MIPB)QIn(®) +B TRoq Qi) A g, N2N, j21 (12)

—Un(x) = AUy (X)+M1-0) Uy ()+0 XRo; Un_ge () A gie +X12; Qiy (0) S(X)

+ 221 Qfn (0) s(x), > a (13)

Taking LST on both sides of the equation{djough (13), we have

0,0 (0) — P,0(0) = A(1 — )P, 0(0) — X=a P (0)5(6) - U; (0)S(0), asi<b (14)
0P;;(6) — P;(0) = AP;;(6) — A(1 — )P;;(6) — ay) 1 Pjk(®)Argy , a<i<b-1, p1 (15)

6T (6) — Py (0) = APy (0) — A(1 — )Ty (6) — 5Bhca Prupsj (0)5(0) — a3 _, Foi- k(Ogic,
1<j<SN-b-1 (16)
6P, (6) — Py;(0) = APy (OA(1 — )Py ;(0) — Xhi—s P+ (0)S(0) — 0 X, P ik (B)Agy.

— 3721 Q45 (0) 5(0) = Up4y(0) 5(0), j = N = b (17)
0Q10(0) — QL 4(0) = AQ; (8) = A(L — B)Q, (0) — EireaPrao(0)V:(6) (18)
b
60,,(0) — Q4,(0) = AT (8) = AL~ BT, (0) = ) Prmn(0)71(0)
~B Y1 G (B)Ag,, O<n<a-1 of1
00),(0) — Q},(0) = 1Q),(®) — (1 - PQ,(0) — BIL, T, (O)Ag,, 22, 1 (20)
63,4(8) — Q15(0) = 1Q.(8) — 1(1 — B)T},(8) — QL (0% (0)] > 2 1)
03,,(0) — Q4 (0) = 23, (®) = AL = HIQL() — Q- ,OW(®) — B Y Ty, (O)Ag,,

0<n<a-l, B2 ! (22)
63,(0) — Q2,(0) = A, (®) — A(L — P)QZ,(6) — Tizy QL, (0)7,(6)

~B 301 Qi (0)Ag,, a<n<N-1 23)

71



Analysis of Bulk Queueing System of Variant ThrddHor Multiple Vacations ...

03, (0) — Q@,(0) = AT, (6) = 11— I, (0) — QP @U(®) = B Y Ty 4 (00,
a<n<N-1, j>2 -~ (24)
03,(0) — Q2,(0) = A8, (6) — (1 — B)QZ,(8) — B Xis By (O2g, (25)

00, (6) -Un(0)= 20,(6) —M(1-0) Uy, (0)-0f_1 Unk ()1 g, 221 Q, (0) S6)
-¥.QF, (0)sp), n=a (26)
Define the following probability generating funatis
pi (Z, 9) = ZFO:O pi,j (O)ZJ, Pi (Z, 0) =ZFO:O pi,j (O)Z], as i < b
3 (20) = 500,02, QU2 0) =%7,QL (02 =1 27)
Q@0 = Q07 F@0) =32,Q,02 =1
U(z 6) = XiaU(0) 2, U(z,00272.0(0) 2",

The probability generating function P(z) of thamher of customers in the queue
at an arbitrary time can be obtained using th@Wahg equation.

P(z) = $2.' Pz, 0) + Bi(z,0) + £, Qf (2,0) + X%, Qf (2, 0)+U(z,0) (28)
From equations (18), (19), (20) and (27)

(6 =B +2X(2)))Q1 (2 0) =Qi(z 0) — V;(6) T3 Zh=a Pmn(0)2" (29)
From equations (21), (22), (20) and (27)

(6 =B +2X(2)))Q} (2 0)= Q} (z,0) — V1(0) X3Z5 Qj—1,n(0)Z" ,j22 (30)
From equations (23), (24), (25) and (27)

(0= B+ 2X(2))Qi (2,0) = Q} (2, 0) ~ V(8) ZNZd Ticey Qln ()2 (31)
(0— B+ AX(2))) Q2 (2 0)= Q?(2,0) — V(0) TNZ2 Q24 12" j>2 (32)

From equations (14),(15)and(27)
(0 — a(r + 2x(2))P(2,0) = P(z,0) — [E%-a Pni(0) + U;(0)]S(0) ,a<i<b-1 (33)
From equations (16), (17) and (27)

b-1

b
ZP[0 — a(A + Ax(2)]Py (z,0) = zPP, (2, 0) — 5(0) Pn(z,0) — ) Pp;(0)7Z

—3(0)[U(z,0) — X325 Un (0)2"](34)
From equations (26) and (27)
[6 —a(2 = 2X(2))]U(2,6) = U(z,0) — U(6) Ti21(Q:(2,0) = T35 Q1n(0)2")  (35)
By substitutingd=p (A-Ax(z)) in (27)-(30)

Qf(z,0) = ViB(A — x(2)) T2zt Xim=a Pmn (0)2" (36)
Q (2 0) = ViB(L — Ax(2)) X325 Q1 (0)z" j>2 (37)
Q3 (z,0) = V,p( — Ax(2)) TNZa Yiee; Qin(0)2", (38)
Q}(z,0) = V,p(L — Ax(2)) INZa QFy nz"; 22 (39)
By substituting6=a (A-Ax(z)) in (33)-(35)

P(z,0) = Sa(L — Ax(2)) ¥5-a Pni(0) + U; (0);a<i<b-1 (40)
2°Py(z,0) = Sa(h — Ax(2) { Zh=a[Pm (2 0) — T25 Py j(0)2]

+[U(z, 0) — ZhZ§ UL (0)2" ]} (41)

U(z,0) = U(a(r — 2x(2))[Xiz1(Q1 (2, 0) — X725 Qin(0)2™)]
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+321(0QF (2, 0) — T425 Q7 (0)2™) (42)

solving forP,(z, 0),

Py (z, 0)=Py(z, 0)[zP — Sa (A — AX(2))] =

sa(h — AX(2)) (ZBA[S( = 2X(2) Bh—a Pam (0)] “Bhhca T Py (0)2

+[U(z,0) — 2823 Un(0)2"] } (43)
Letp; = Xh=a Pmi(0), qf = X2, Q"(;(0), andqf = X2, Q%;(0), i20

From the equations (36) and (29)

Q0= = eyt WG~ @) = V1O Eizbpaz, (44)

From equations (37) and (30)
Q0= = eyt B0~ @) ~ V@) B Qs (00222
From the equations (38) and (31)

Q@ 0)= = Gy V2P0~ X@) = R0} Th5 Q"

From equations(36) and (30)

Q@ 0)= = iy (2P0~ MX@) ~ V2 (0} 3= Q1 (00222 (45)

From equations (40) and (34)
P2, 0)= gy S0+ 2X(@) = SO)R +Upz'}, a<i<b-1 (46)
From equations (43) and (35)

0 a—1
T _ 1 T7 _ _iT 2 _ 2 n
0(2,6) = ~— D) [Ta(2 - 2X(2))] - U(8) ; (Ql (2,0) ; Q7. (0)z )

+(Qf (2,0) — X325 Qfn (0)2™) (47)
From equations (39) and (34)

~ _ Ga(r+2x(2))-S0)f(z)

Po(z, e)_(e —a(tx(2))( 2P —5a(—1X(2))

where f(2)Sa(h+ rx(2)){Thkp,, (2,0) — zb—lp ZUa(A —2X(2)) [V1B( —

() ZaZh(p,,ah)z" — G Q7 + Vop(h — %X(Z))Z o + )7 — TN 'Q’Z ]
Let P(z)=be the PGF of the gueue size at an arpitirae epoch.
P(z) = 225! B(z,0) +Pi(z,0) + X%, Qf (2,0) + X%, Qf (2,0) +U(z,0)
Using equations (40), (41), (42), (43), (44), (48%) in (27)

B(S(a0:=2.00-1) 205" (py+ui) (2P -2")

BU (V1 (A—2X(z)-1) (X3 O(pn +ql )z +

_L BT (V2(A:-2X(@)-1) EN= (ap +a)2"

P(2)= aB(=242x(2) ) ( 20 =5 (a(A—2X(z)) (49)
The probability generating function P(z) has tdaséatP(1)=1. Applying L 'Hospital's
rule and evaluatingim,_,; P(z) and equating the expression to 1 AB{X)E(S) > 0 is
obtained.Definep' as AEFES) Thusp<1l is the condition to be satisfied for the
existence of steady state for model under condidera

(48)
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3.1. Computational aspects of unknown probabilities
Equation (49) gives the probability generating tiorc P(z) of the number of customers
in the queue at an arbitrary time epoch, which lve® 2N + 1- a unknown probabilities

namely, @, Of, 0, G3e-eemeemene. - N O« O o PR Q. q%i=0_1,2mN_l and
q5i=aa+1,a+2,...N—1 are expressed in terms Of;iiﬁ,l,z,...a—l. Equation (49) has N+b
unknowns g, p; Py, Pg--+--R_1 QgsUyseveeee-- q,_,- The following theorms are proven to

express gin terms p in such a way that the numerators has only b eotst By

Rouche's theorm of complex variables, it can begudhat(z® — 1)3(a(: — 2x(2))) has
b-1 zeros inside and one of the unit cifde=1. Since P(z) is analytic within and on the
unit circle, the numerator must vanish at thesetppiwhich gives b equations with b
unknowns.

3.1. Expected queue length
The expected queue length E(Q) (i.e. mean numbeusibmers waiting in the queue) at
an arbitrary time epoch, is differentiating P(Zafl and is given Bim,_; P(z) = E(Q),
Y (p; +up)p (b(b— 1) —i(i— 1) f1 ]
£(Q)= | + 22 (p; + ui )B(b — D2
ZQBXE(X)[b S1]2 | + Z B(p + ql) 3 + Z oa(p + ql)l’lf4|

l N-1 ﬁ(qn + qrzl)fS + yN= oc(qn + qrzl)nf6J
where S1aAE(X)E(S); S2 = ahE E(S)+ a?A”E2(X)E(S2); V1=BAE(X)E(V,):
V2=BAE" (X)E(V,)+A2B2E2(X)E(V,2):V3=BAE(X)E(V,):VA=BAE E(V,)+ B2 E2(X)E(
v,
T1=2WEX) (b(b — 1) — 2aAE (1)E(S)—a?A E2(X)E(S2))+b(b-1);
1=[b-s1]S1; f2=[b-s1]S2E(S)T1;
3=[b(b-1)(U2 V1+ 2U1V2 +V2U1)+b(U1 V2+ 2U2V1 +V1Qpd-S1)( U2 V1+ 2U1V2
+V2U1)T1;
f4=2b(U2 V1+ 2U1V2 +V2U1) [b-s1];
5=[b(b-1)V3+bV4](b — S1) — b(U1 V2 + 2U2V1 + V1U2) T1 and f6= 2bV3[b-S1]

3.2. Particular cases

In this section, some of the existing models aduded as a particular case of the
proposed model.

Case (i): Considering single service, (i.e. a=b=1), arttiéfre is no vacation of type two
(Vop(A — AX(Z)) = 1), then the Equation (49) reduces to

P(2)== RSO [ViB(h — AX(z) — 1)(po + Xn= anz"] which coincides with
the queue size distribution of M*/G/1 queueing system with N-policy and multiple

vacations.

Case (ii): If there is no vacation of type two (i.&p(\ — A(z)) = V{B(A — AX(2))),
1

P(2)3 T(-M4AX(@)) (2P -Sa(A- xx(z))) { Sa(—2+2X(2) — D X2 B(2P — 2')p; +

ViB(A — AX(2)) — 1 (X328 puz™ + YNZ4 qhz™)}which gives the queue size distribution
of aM*/G(a,b)/1 queueing system with multiple vacationg B policy.
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Case (iii): If all arrivals are allowed to join the system, i®=1, p=1, then (49) becomes

R BO—X@) -1 2P —z)pi+ (o (A—Ax(2)—1), Vi (A—AX(2)—-1 T3 (Z°—1)Chz"} .\ . o
P(2) X which  coincides

with the resultM*/G(a,b)/1 and multiple without setup time and N{i®oof Krishna
Reddy et al (1998).

6. Conclusion

A bulk arrival general bulk service queueing witiriant threshold policies for secondary
jobs is analyzed. The probability generating fumttior queue size at an arbitrary epoch
is derived. Various performance measures are atdmained. Some particular cases are
also discussed.
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