Intern. J. Fuzzy Mathematical Archive Vol. 6, No. 2, 2015,207-213 ISSN: 2320 –3242 (P), 2320 –3250 (online) Published on 22 January 2015 www.researchmathsci.org

International Journal of **Fuzzy Mathematical Archive**

On Fuzzy Ward Continuity in an Intuitionistic 2-Fuzzy 2-Normed Linear Space

Thangaraj Beaula¹ and D.Lilly Esthar Rani²

¹Department of Mathematics, TBML College, Porayar, TamilNadu, India - 609 307 e-mail: edwinbeaula@yahoo.co.in Corresponding Author

²Department of Mathematics, TBML College, Porayar, TamilNadu, India - 609 307

Received 3 November 2014; accepted 4 December 2014

Abstract. In this paper not only the fuzzy ward continuity but also some other kinds of continuities are investigated in intuitionistic 2-fuzzy 2-normed linear space. It turns out that uniform limit of fuzzy ward continuous functions is again fuzzy ward continuous.

Keywords: Fuzzy ward continuity, fuzzy ward compactness, quasi Cauchy

AMS Mathematics Subject Classification (2010): 03E72, 03F55

1. Introduction

The concepts involving continuity play a major role not only in pure mathematics but also in other branches of sciences like computer science, information theory etc., Menger [6] introduced the notion called a generalized metric in 1928. On the other hand Vulich [11] in 1938 defined a notion of higher dimensional norm in linear spaces. The concept of 2-normed space was developed by Gahler in the middle of 1960's [5]. Recently many mathematicians came out with results in 2-normed spaces, analogous with that in classical normed spaces and Banach spaces [4,7,8]. Using the main idea in the definition of sequential continuity, many kinds of continuities were introduced and investigated in [1,2,3,10] not all but only some of them. The concept of ward continuity of real functions and ward compactness of a subset E of R are introduced by Cakalli in [2]. In 1965, Zadeh [12] introduced the concept of the fuzzy set in this seminal paper. Somasundaram and Beaula [9] have newly coined 2-fuzzy normed linear space and proved many important theorems. In this paper our aim is to investigate the concept of fuzzy ward continuity in an intuitionistic 2-fuzzy 2-normed linear space and prove some interesting theorems.

2. Preliminaries

Definition 2.1. A binary operation *: $[0,1] \times [0, 1] \rightarrow [0,1]$ is a continuous t-norm if it satisfies the following conditions:

- 1. * is commutative and associative
- 2. * is continuous
- 3. a * 1 = a, for all $a \in [0,1]$
- 4. $a * b \le c * d$ whenever $a \le c$ and $b \le d$ and $a,b,c,d \in [0,1]$

On Fuzzy Ward Continuity in an Intuitionistic 2-Fuzzy 2-Normed Linear Space

Definition 2.2. A binary operation $\Diamond : [0,1] \times [0,1] \rightarrow [0,1]$ is a continuous t – conorm if it satisfies the following conditions:

- 1. \diamond is commutative and associative
- 2. \diamond is continuous
- 3. $a \diamond 0 = a$, for all $a \in [0,1]$
- 4. $a \diamond b \leq c \diamond d$ whenever $a \leq c$ and $b \leq d$ and $a, b, c, d \in [0,1]$

Definition 2.3. An intuitionistic fuzzy 2- normed linear space (i.2f-2-NLS) is of the form A = {F(X), N(f_1, f_2, t), M(f_1, f_2, t) / (f_1, f_2) \in F[(X)]²} where F(X) is a linear space over a field K, * is a continuous t-norm, ◊ is a continuous t-conorm, N and M are fuzzy sets on $[F(X)]^2 \times (0,\infty)$ such that N denotes the degree of membership and M denotes the degree of non-membership of $(f_1, f_2, t) \in [F(X)]^2 \times (0, \infty)$ satisfying the following conditions:

- N (f₁, f₂, t) + M (f₁, f₂, t) ≤ 1 (1)
- (2) $N(f_1, f_2, t) > 0$
- (3) $N(f_1, f_2, t) = 1$ if and only if f_1, f_2 are linearly dependent
- (4) $N(f_1, f_2, t)$ is invariant under any permutation of f_1, f_2
- (5) $N(f_1, f_2, t) : (0, \infty) \to [0,1]$ is continuous in t. (6) $N(f_1, cf_2, t) = N(f_1, f_2, \frac{t}{|c|}), \text{ if } c \neq 0, c \in K$
- N $(f_1, f_2, s) * N(f_1, f_3, t) \le N(f_1, f_2 + f_3, s + t)$ (7)
- (8) M (f_1, f_2, t) > 0
- (9) $M(f_1, f_2, t) = 0$ if and only if f_1, f_2 are linearly dependent
- (10) M (f_1 , f_2 , t) is invariant under any permutation of f_1 , f_2
- (11) M (f₁, cf₂, t) = M (f₁, f₂, $\frac{t}{|c|}$), if $c \neq 0, c \in k$
- (12) M (f_1, f_2, s) \Diamond M (f_1, f_3, t) \ge M ($f_1, f_2 + f_2, s + t$)
- (13) M (f₁, f₂, t) : $(0, \infty) \rightarrow [0,1]$ is continuous in t.

3. Fuzzy ward continuity and fuzzy ward compactness

Definition 3.1. A sequence $\{f_n\}$ of points in an intuitionistic 2-fuzzy 2-normed linear space (F(X), N, M) is said to be quasi-Cauchy if $\lim N(\Delta f_n, g, t) = 1$ and

 $\lim M(\Delta f_n, g, t) = 0$ for every $g \in F(X), t \in (0,1)$, where $\Delta f_n = f_{n+1} - f_n$ for n in set of natural numbers.

Definition 3.2. A subspace A of F(X) is said to be fuzzy ward compact if any sequence in A has a quasi-Cauchy subsequence.

Definition 3.3. Let $(F(X), N_1, M_1)$ and $(F(Y), N_2, M_2)$ be intuitionistic 2-fuzzy 2-normed linear spaces.

A function $\varphi: F(X) \to F(Y)$ is said to be fuzzy ward continuous if it preserves quasi-Cauchy property. That is, $\lim N_2(\Delta \varphi(f_n), g, t) = 1$ and $\lim M_2(\Delta \varphi(f_n), g, t) = 0$ for every $g \in F(Y)$ whenever $\lim_{n \to \infty} N_1(\Delta f_n, h, t) = 1$ and $\lim_{n \to \infty} M_1(\Delta f_n, h, t) = 0$ for every $h \in F(X)$.

Thangaraj Beaula and D. Lilly Esthar Rani

Definition 3.4. A function φ on a subspace A of an intuitionistic 2-fuzzy 2-normed linear space $(F(X), N_1, M_1)$ is said to be sequentially continuous at f_0 if for any sequence $\{f_n\}$ in A converging to f_0 , $\varphi(f_n)$ converges to $\varphi(f_0)$ in $(F(Y), N_2, M_2)$.

Theorem 3.1. If φ : $F(X) \rightarrow F(Y)$ is fuzzy ward continuous on A of F(X) then it is sequentially continuous on A.

Proof: Let $\{f_n\}$ be a convergent sequence in A.

Then $\lim_{n \to \infty} N_1(f_n - f_0, h, t) = 1$ and $\lim_{n \to \infty} M_1(f_n - f_0, h, t) = 0$ where $h \in F(X), t \in (0, 1)$

Construct a sequence $\{g_n\}$ as $g_n = \begin{cases} f_n & \text{if } n = 2k - 1 \text{ where } k \text{ is a positive integer} \\ f_0 & \text{if n is even} \end{cases}$

Consider
$$N_1(g_n - f_0, h, t) = N_1\left(g_n - f_n + f_n - f_0, h, \frac{t}{2} + \frac{t}{2}\right)$$

$$\geq N_1\left(g_n - f_n, h, \frac{t}{2}\right) * N_1\left(f_n - f_0, h, \frac{t}{2}\right)$$
(1)

When n is even, (1) becomes

$$N_{1}(g_{n} - f_{0}, h, t) \geq N_{1}\left(f_{n} - f_{0}, h, \frac{t}{2}\right) * N_{1}\left(f_{n} - f_{0}, h, \frac{t}{2}\right) = N_{1}(f_{0} - f_{n}, h, t)$$
Again when n is odd, $N_{1}(g_{n} - f_{0}, h, t) \geq N_{1}(f_{n} - f_{0}, h, t)$
Again $M_{1}(g_{n} - f_{0}, h, t) = M_{1}\left(g_{n} - f_{n} + f_{n} - f_{0}, h, \frac{t}{2} + \frac{t}{2}\right)$

$$\leq M_{1}\left(g_{n} - f_{n}, h, \frac{t}{2}\right) \diamond M_{1}\left(f_{n} - f_{0}, h, \frac{t}{2}\right)$$
(2)
when n is odd (2) becomes $M_{1}(g_{n} - f_{0}, h, t) \leq M_{1}(f_{n} - f_{0}, h, t)$

when n is odd, (2) becomes $M_1(g_n - f_0, h, t) \le M_1(f_n - f_0, h, t)$

Again when n is even,

$$M_1(g_n - f_0, h, t) \le M_1\left(f_0 - f_n, h, \frac{t}{2}\right) \Diamond M_1\left(f_n - f_0, h, \frac{t}{2}\right) = M_1(f_0 - f_n, h, t)$$

In either case, $\{g_n\}$ converges to f_0 and $\{g_n\}$ is a quasi-Cauchy sequence. As φ is fuzzy ward continuous, define the transformed sequence $\varphi(g_n)$ as

$$\varphi(g_n) = \begin{cases} \varphi(f_n) & \text{if } n = 2k - 1 \text{ where } k \text{ is a positive integer} \\ \varphi(f_0) & \text{if } n \text{ is even} \end{cases}$$

Again $\varphi(g_n)$ is quasi-Cauchy.

For
$$N_2(\varphi(g_{n+1}) - \varphi(g_n), h^*, t)$$

= $N_2\left(\varphi(g_{n+1}) - \varphi(f_{n+1}) + \varphi(f_{n+1}) - \varphi(g_n) + \varphi(f_n) - \varphi(f_n), h^*, \frac{t}{3} + \frac{t}{3} + \frac{t}{3}\right)$

On Fuzzy Ward Continuity in an Intuitionistic 2-Fuzzy 2-Normed Linear Space

$$\geq N_{2} \left(\varphi(g_{n+1}) - \varphi(f_{n+1}), h^{*}, \frac{t}{3} \right) * N_{2} \left(\varphi(f_{n}) - \varphi(g_{n}), h^{*}, \frac{t}{3} \right) \\ * N_{2} \left(\varphi(f_{n+1}) - \varphi(f_{n}), h^{*}, \frac{t}{3} \right)$$
(3)

If n is odd, (3) becomes

$$N_{2}(\varphi(g_{n+1}) - \varphi(g_{n}), h^{*}, t) \ge N_{2}\left(\varphi(f_{n+1}) - \varphi(f_{n}), h^{*}, \frac{t}{3}\right)$$

Again if n is even,

$$\begin{split} &N_{2}\bigg(\varphi(g_{n+1}) - \varphi(g_{n}), h^{*}, \frac{t}{3} + \frac{t}{3} + \frac{t}{3}\bigg) \\ &\geq N_{2}\bigg(\varphi(f_{0}) - \varphi(f_{n+1}), h^{*}, \frac{t}{3}\bigg)^{*} N_{2}\bigg(\varphi(f_{n}) - \varphi(f_{0}), h^{*}, \frac{t}{3}\bigg)^{*} N_{2}\bigg(\varphi(f_{n+1}) - \varphi(f_{n}), h^{*}, \frac{t}{3}\bigg) \\ &\geq N_{2}\bigg(\varphi(f_{n+1}) - \varphi(f_{n}), h^{*}, \frac{t}{3}\bigg) \end{split}$$

$$\begin{split} M_{2}(\varphi(g_{n+1}) - \varphi(g_{n}), h^{*}, t) \\ \leq M_{2} \bigg(\varphi(g_{n+1}) - \varphi(f_{n+1}), h^{*}, \frac{t}{3} \bigg) \Diamond M_{2} \bigg(\varphi(f_{n}) - \varphi(g_{n}), h^{*}, \frac{t}{3} \bigg) \Diamond \bigg(\varphi(f_{n+1}) - \varphi(f_{n}), h^{*}, \frac{t}{3} \bigg) \\ \text{If n is odd,} \end{split}$$

$$M_{2}(\varphi(g_{n+1}) - \varphi(g_{n}), h^{*}, t) \leq M_{2}\left(\varphi(f_{n+1}) - \varphi(f_{n}), h^{*}, \frac{t}{3}\right)$$

If n is even,

$$\begin{split} &M_{2}(\varphi(g_{n+1}) - \varphi(g_{n}), h^{*}, t) \\ &\leq M_{2}\bigg(\varphi(f_{0}) - \varphi(f_{n+1}), h^{*}, \frac{t}{3}\bigg) \Diamond M_{2}\bigg(\varphi(f_{n}) - \varphi(f_{0}), h^{*}, \frac{t}{3}\bigg) \Diamond M_{2}\bigg(\varphi(f_{n+1}) - \varphi(f_{n}), h^{*}, \frac{t}{3}\bigg) \\ &\leq M_{2}\bigg(\varphi(f_{n+1}) - \varphi(f_{n}), h^{*}, \frac{t}{3}\bigg) \end{split}$$

Hence $\{\varphi(f_n)\}$ is quasi-Cauchy sequence. Now, $\lim_{n \to \infty} N_2(\varphi(g_{n+1}) - \varphi(g_n), h^*, t) = 1$ and $\lim_{n \to \infty} M_2(\varphi(g_{n+1}) - \varphi(g_n), h^*, t) = 0$ (4) From (4) and by construction of $\{g_n\}$ we get, $\lim_{n \to \infty} N_2(\varphi(f_{n+1}) - \varphi(f_0), h^*, t) = 1$ and $\lim_{n \to \infty} M_2(\varphi(f_{n+1}) - \varphi(f_0), h^*, t) = 0$ Thus $\varphi(f_{n+1})$ converges to $\varphi(f_0)$ and so φ is sequentially continuous on A.

Theorem 3.2. Let $(F(X), N_1, M_1)$ and $(F(Y), N_2, M_2)$ be intuitionistic 2-fuzzy 2-normed linear spaces and A be a fuzzy ward compact subspace of F(X). If $\varphi: F(X) \to F(Y)$ is fuzzy ward continuous on A then $\varphi(A)$ is fuzzy ward compact.

Proof: Ward compactness of A implies that there is a subsequence $\{g_{n_k}\}$ of $\{g_n\}$ with

Thangaraj Beaula and D. Lilly Esthar Rani

 $\lim_{n_k \to \infty} N_1 \left(\Delta(g_{n_k}), h, t \right) = 1 \text{ and } \lim_{n_k \to \infty} M_1 \left(\Delta(g_{n_k}), h, t \right) = 0, \text{ for every } h \in F(X), t \in (0, 1).$ Let $\left\{ \varphi(g_{n_k}) \right\} = \left\{ f_{n_k} \right\}$. Then $\left\{ f_{n_k} \right\}$ is a subsequence of the sequence $\left\{ \varphi(g_n) \right\}$ with $\lim_{n_k \to \infty} N_2 \left(\Delta(f_{n_k}), \varphi(h), t \right) = 1$ and $\lim_{n_k \to \infty} M_2 \left(\Delta(f_{n_k}), \varphi(h), t \right) = 0$ Satisfies the requirements as desired.

3.1. Uniform continuity

Definition 3.1.1. A function $\varphi: F(X) \to F(Y)$ is said to be uniformly continuous on a subspace A of F(X) if for any $\varepsilon > 0$ there exists $\delta > 0$ such that $N_2(\varphi(f_1) - \varphi(f_2), h, t) > 1 - \varepsilon M_2(\varphi(f_1) - \varphi(f_2), h, t) < \varepsilon$ for any $h \in F(Y), t \in (0, 1)$ whenever $N_1(f_1 - f_2, g, t) > 1 - \delta M_1(f_1 - f_2, g, t) < \delta$ for every $f_1, f_2 \in A$ and $g \in F(X)$.

Theorem 3.1.1. If a function φ : $F(X) \rightarrow F(Y)$ is uniformly continuous on a subspace A of F(X) then it is fuzzy ward continuous on A.

Proof: Let φ be uniformly continuous on A and $\{f_n\}$ be any quasi-Cauchy sequence of points in A. Then for given $\varepsilon > 0$, there exists $\delta > 0$ such that $N_2(\varphi(f_1) - \varphi(f_2), h, t) > 1 - \varepsilon M_2(\varphi(f_1) - \varphi(f_2), h, t) < \varepsilon$ for any $h \in F(Y), t \in (0, 1)$ whenever $N_1(f_1 - f_2, g, t) > 1 - \delta$

 $M_1(f_1 - f_2, g, t) < \delta$ for any $f_1, f_2 \in A$ and $g \in F(X)$

For the choice of δ , there exists N depending on both \mathcal{E} and δ . Since $\{f_n\}$ is quasi-Cauchy,

 $\lim N_1(\Delta f_n, g, t) = 1$ and so $N_1(\Delta f_n, g, t) > 1 - \delta$ for all n > N

 $\lim M_1(\Delta f_n, g, t) = 0$ and so $M_1(\Delta f_n, g, t) < \delta$ for all n > N

So $N_2(\Delta \varphi(f_n), h, t) > 1 - \varepsilon$ for all n > N and $M_2(\Delta \varphi(f_n), h, t) < \varepsilon$

Hence φ is ward continuous.

Theorem 3.1.2. The image of a fuzzy ward compact space under a uniform continuous map is fuzzy ward compact.

Proof: Let $\varphi: F(X) \to F(Y)$ be uniform continuous; let A be a fuzzy ward compact subspace of F(X). We assert that $\varphi(A)$ is a fuzzy ward compact subspace of F(Y). Consider a sequence $\{g_n\}$ in $\varphi(A)$, provided $g_n = \varphi(f_n)$ where $\{f_n\}$ is a sequence in A. Since A is ward compact, $\{f_n\}$ has a quasi-Cauchy subsequence $\{f_{n_k}\}$ because A is ward compact. Therefore, $\lim_{n_k \to \infty} N_1(\Delta f_{n_k}, g, t) = 1$ and $\lim_{n_k \to \infty} M_1(\Delta f_{n_k}, g, t) = 0$. For a given $\mathcal{E} > 0$, there exists δ satisfying the required conditions of uniform continuity. Choose a positive number N depending on both \mathcal{E} and δ such that On Fuzzy Ward Continuity in an Intuitionistic 2-Fuzzy 2-Normed Linear Space

 $\lim_{n_k \to \infty} N_2 \left(\Delta \varphi(f_{n_k}), h, t \right) = 1 \text{ and } \lim_{n_k \to \infty} M_2 \left(\Delta \varphi(f_{n_k}), h, t \right) = 0 \text{ provided } \lim_{n_k \to \infty} N_1 \left(\Delta f_{n_k}, g, t \right) = 1 \text{ and } \lim_{n_k \to \infty} M_1 \left(\Delta f_{n_k}, g, t \right) = 0 \text{ for all } n_k > N. \text{ Thus } \varphi(A) \text{ is fuzzy ward compact.}$

Theorem 3.1.3. Let $\{\varphi_n\}$ be a sequence of uniformly continuous functions defined on a subspace A of F(X) to F(Y), and if $\{\varphi_n\}$ converges uniformly to φ then φ is uniformly continuous.

Proof: Using the uniform convergence of $\{\varphi_n\}$, for a given $\mathcal{E} > 0$, there exists a positive integer N such that $N_2(\varphi_n(f) - \varphi(f), h, t) > 1 - \mathcal{E}$ where $n \ge N, f, h \in A$ $M_2(\varphi_n(f) - \varphi(f), h, t) < \mathcal{E}$

Using the uniform continuity of φ_n on A for a given $\in > 0$, there exists $\delta > 0$ such that $N_2(\varphi_N(f_1) - \varphi_N(f_2), h, t) > 1 - \varepsilon$ and $M_2(\varphi_N(f_1) - \varphi_N(f_2), h, t) < \varepsilon$ for

 $f_1, f_2 \in A$ and $h \in F(Y)$ provided $N_1(f_1 - f_2, g, t) > 1 - \delta$, $M_1(f_1 - f_2, g, t) < \delta$ (by the choice of N). Then whenever $N_1(f_1 - f_2, g, t) > 1 - \delta$,

$$\begin{split} &N_{2}\left(\varphi(f_{1})-\varphi(f_{2}),h,t\right)=N_{2}\left(\varphi(f_{1})-\varphi_{N}(f_{1})+\varphi_{N}(f_{1})-\varphi_{N}(f_{2})+\varphi_{N}(f_{2})-\varphi(f_{2}),h,t\right)\\ &\geq N_{2}\left(\varphi(f_{1})-\varphi_{N}(f_{1}),h,\frac{t}{3}\right)*N_{2}\left(\varphi_{N}(f_{1})-\varphi_{N}(f_{2}),h,\frac{t}{3}\right)*N_{2}\left(\varphi_{N}(f_{2})-\varphi(f_{2}),h,\frac{t}{3}\right)\\ &\geq (1-\varepsilon)*(1-\varepsilon)*(1-\varepsilon)\\ &>(1-\varepsilon) \text{ for every }h\in F(Y)\\ &\text{Also, when }M_{1}\left(f_{1}-f_{2},g,t\right)<\delta\\ &M_{2}\left(\varphi(f_{1})-\varphi(f_{2}),h,t\right)=M_{2}\left(\varphi(f_{1})-\varphi_{N}(f_{1})+\varphi_{N}(f_{1})-\varphi_{N}(f_{2})+\varphi_{N}(f_{2})-\varphi(f_{2}),h,t\right)\\ &\geq M_{2}\left(\varphi(f_{1})-\varphi_{N}(f_{1}),h,\frac{t}{3}\right) &\wedge M_{2}\left(\varphi_{N}(f_{1})-\varphi_{N}(f_{2}),h,\frac{t}{3}\right) &\wedge M_{2}\left(\varphi_{N}(f_{2})-\varphi(f_{2}),h,t\right)\\ &\leq \varepsilon &\wedge \varepsilon \\ &<\varepsilon &\text{ for every }h\in F(Y)\\ &\text{So }\varphi &\text{ is uniformly continuous on A as desired.} \end{split}$$

Theorem 3.1.4. Let $\{\varphi_n\}$ be a sequence of fuzzy ward continuous functions defined on a

subspace A of an intuitionistic 2-fuzzy 2-normed linear space F(X) to F(Y) and $\{\varphi_n\}$ is uniformly convergent to a function φ then φ is fuzzy ward continuous. **Proof:** We assert that φ is fuzzy ward continuous on A. Take any quasi-Cauchy sequence $\{f_n\}$ in A. As $\{\varphi_n\}$ is uniformly convergent to φ for $\varepsilon \in (0,1)$ there exists a positive integer N such that $N_2(\varphi_n(f_n) - \varphi(f_n), h, t) > 1 - \varepsilon$ and $M_2(\varphi_n(f_n) - \varphi(f_n), h, t) < \varepsilon$ provided $n \ge N$. By the choice of N, as φ_N is ward continuous on A, there exists a positive integer $N_0 \ge N$ such that

Thangaraj Beaula and D. Lilly Esthar Rani

$$\begin{split} &N_{2}\left(\varphi_{N}(f_{n+1})-\varphi_{N}(f_{n}),h,t\right)>1-\varepsilon \text{ and } M_{2}\left(\varphi_{N}(f_{n+1})-\varphi_{N}(f_{n}),h,t\right)<\varepsilon, \text{ for every } n\in N_{0} \text{ and } h\in F(Y) \\ &N_{2}\left(\varphi(f_{n+1})-\varphi(f_{n}),h,t\right) \\ &=N_{2}\left(\varphi(f_{n+1})-\varphi_{N}(f_{n+1})+\varphi_{N}(f_{n+1})-\varphi_{N}(f_{n})+\varphi_{N}(f_{n})-\varphi(f_{n}),h,\frac{t}{3}+\frac{t}{3}+\frac{t}{3}\right) \\ &\geq N_{2}\left(\varphi(f_{n+1})-\varphi_{N}(f_{n+1}),h,\frac{t}{3}\right)*N_{2}\left(\varphi_{N}(f_{n+1})-\varphi_{N}(f_{n}),h,\frac{t}{3}\right)*N_{2}\left(\varphi_{N}(f_{n})-\varphi(f_{n}),h,\frac{t}{3}\right) \\ &\geq (1-\varepsilon)*(1-\varepsilon)*(1-\varepsilon) \\ &=1-\varepsilon \text{ for every } n\geq N_{0} \\ &\text{ and } M_{2}\left(\varphi(f_{n+1})-\varphi_{N}(f_{n+1})+\varphi_{N}(f_{n+1})-\varphi_{N}(f_{n})+\varphi_{N}(f_{n})-\varphi(f_{n}),h,\frac{t}{3}+\frac{t}{3}+\frac{t}{3}\right) \\ &\leq M_{2}\left(\varphi(f_{n+1})-\varphi_{N}(f_{n+1}),h,\frac{t}{3}\right) \\ &\leq N_{2}\left(\varphi(f_{n+1})-\varphi_{N}(f_{n+1}),h,\frac{t}{3}\right) \\ &\leq N_{2}\left(\varphi(f_{n+1})-\varphi(f_{n+1}),h,\frac{t}{3}\right) \\ &\leq N_{2}\left(\varphi(f_{n+1})-\varphi($$

Hence φ is fuzzy ward continuous.

REFERENCES

- 1. J.C.Burton, Quasi-cauchy sequences, *American Mathematical Monthly*, 117(4) (2010) 328-333,.
- 2. H.Cakalli, N_{θ}-ward continuity, *Abstract and Applied Analysis*, (2012) 8 pages 80456.
- 3. I.Canak and M.Dik, New types of continuities, *Abstract and Applied Analysis*, (2010) 6 pages 258980.
- 4. P.Das, E.Savas, S.Bhunia, Two valued measure and some new double sequence spaces in 2-normed spaces, *Czechoslovak Math. J.* 61(3), pp. 809-825, 2011.
- 5. S.Gahler, Linear 2-normierte Raume, Mathematsche Nachrichten, 28(1964) 1-3.
- 6. K.Menger, Unter Suchungen Ueberallgeine Metrik, *Math. Ann.*, 100 (1) (1928) 75-163.
- 7. S.P.Mohiuddine, Some new results on approximation in fuzzy 2-normed space, *Mathematical Computing Modelling*, 53(5-6) (2011) 574-580.
- 8. R.Pilakkt, S.Thirumangalath, Results in linear 2-normed spaces analogous to Baire's theorem and closed graph theorem, *International Journal of Pure and Applied Mathematics*,74(4) (2012) 509-517.
- 9. R.M.Somasundaram and Thangaraj Beaula, Some aspects of 2 fuzzy 2-normed linear space, *Bulletin of Malaysian Mathematical Society*, 32(2) (2009) 211-222.
- 10. R.W.Valin, Creating slowly oscillating sequences and slowly oscillating continuous functions, *Acta Mathematica Universitat Comenianae*, 80 (1) (2011) 71-78.
- 11. B.Vulich, Ona generalized notion of convergence in a Banach space, *Annals of Math.* 38 (1973) 156-174.
- 12. L.A.Zadeh, Fuzzy Sets, Information and Control, 8 (1965) 338-355.