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Abstract. The rate of growth of data in an information sgstie exponential every year,

hence data base of an information system become, laugl the number of association
rules extracted from these data bases is too maAychallenging question in front of

knowledge finder is the extraction of the actuabwtedge present from these set of
association rules. Prior to the knowledge extractimm a set of association rules,
determination of their interest plays a vital rol&ince quality rules can only lead to
extract implicit knowledge. Interesting associatiales may mined directly by data
mining tools on applying interestingness measureitevimining, or their interestingness
determined by quality measures after mining. s thork, we developed a method to
determine an interesting set of association rulas fa set of mined rules by determining
homogeneity coefficient (HC). The range of HC varfeom 0 to 1. HC value of a

measure on a rule close to 1, leads interestingfsgtsociation rule and the knowledge
extracted from this set of rules consistent wittualkcknowledge present.

Keywords: Data mining, Association rule, Interestingness Mees variability
coefficient, homogeneity coefficient.
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1. Introduction

An approximate measure of the right thing is bettan the exact measure of the wrong
thing. Hence we may assume approximate measunetemesting rule will lead to better
knowledge in the process knowledge discovery ia @&DD). Cluster analysis is a class
of techniques used to classify objects or casesriiatively homogenous groups called
clusters [2, 7, 8]. Objects in each cluster tendeaimilar to each other and dissimilar to
objects in other clusters. This is an approachdbthe rules speak for themselves’ by
means of transactions. Application of clusteringchtéques might improve the
understandability of mined rules by bringing togathsimilar’ rules into the same
cluster. It may be easier to infer item behavienfrrule clusters than from a rule list.
This is because consecutive rules in a rule lisy mat have any relationship to each
other. This can confound the user thus making tierpretation difficult. Clustering
differs from grouping, in that there is no precdmed notion of the structure or the
number of groups that may exist in the data [2]e Tdea here is to look for a ‘natural’
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structure in the data on the basis of which clgstee evolved. Researchers have used
clustering and grouping as strategies to improwe uhderstandability of rules. An
association rule is an implication of the form-8 where AJl, BOIl, ANB =@ and | is

the item set [5]. We may assume that rule meanayashan association rule in this study.
Statistically, variability is defined as the dewst from base point. Variability may
calculate by range, mean, variance, deviationscaefficient of variation (CV). In our
previous work [12] we ranked ARs by the value of.dMs the fact that lower the CV
leads, less deviation among the variables and hititee CV leads there will be more
deviation among the variables. The CV predicts grdeviation, when the variables
having negative values or the mean of the variabéeome zero. And we know that if
we measure temperature by Celsius and Fahrenhtst thre variation between Celsius
and Fahrenheit units remains the same. While theffiCient of Variation [3], defined as
s/M, is often used to compare two standard deviatiwhen their means differ
substantially, it, too, is inadequate for presamippses: because s is not always smaller
than the mean, it is possible for CV to be gretiten 1-lack of a natural ceiling which, as
in the case of s"2 and s, makes a definitive ingtation of the size of CV impossible.
Because of this drawback of CV, we proposed a et technique using variability
coefficient (VC) and homogeneity coefficient [L1jle assume that quality remains the
same as interest in this study.

2. Related works

Goktas and Isci [4] reviewed some common measused tb measure the association
between two rules; the degree of association veilenine the interestingness of ARs.
Most of the measures used to determine the quafligssociation rules are build with
mean and variance. Lent et al. [10] have introdute notion of a ‘clustered’ AR. A
clustered AR is a rule that is formed by combingimilar, ‘adjacent’ association rules to
form a few general rules. Wang et al. [14] maximizgertain interestingness criteria
during the merging process. Toivonen et al. [13]ppsed another approach; Distance
between two rules is defined as the number of &@iens in which the two rules with
the same consequents differ. Gupta et al. [5] hanaposed a normalized distance
function called conditional market-basket probapi{CMPB) distance. This distance
function tends to group all those rules that ‘cotlee same set of transactions. Gupta et
al. [5] state “rules involving different items bsgrving equal purposes were found to be
close good neighbors” [5]. Thus, their approactalide to capture some amount of
customer purchasing behavior. One of the limitatiof both the schemes is the
arbitrariness of the distance measures used ferctuktering [1]. Moreover, they do not
develop any framework to concisely describe theeggted rule clusters.

3. Problem statement

When it comes to quality of an association ruley llee quality of a rule is measured, to
determine if it is useful, interesting, importatt.eBut there is no formal definition of
quality and/or interestingness [7]. Currently th&ea collection of different measures
available which is partly due to the traditionalthwals of support and confidence being
considered insufficient [10]. Most of the qualityeasures defined in terms of mean and
variance are not able find the actual degree afciesson due to the impossibility of CV
[12], when variance is greater than mean. The @egfdhiomogeneity is a group exhibits
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on some measure and the difference in homogerseityei group exhibits across two or
more measures. These issues assume particulammeewhen the interest lies in
deciding whether to subdivide the set of ARs onldhss of the information at hand.

3.1. Materials and methods

Interestingness of set association rules will bleutated in this work by variability
coefficient (VC) or by coefficient of homogeneit€). By fixing the threshold on VC
or HC, we will cluster the association rule and malecision on the necessity of further
division.

3.1.1. Variability coefficient

Variability consists of the differences in magn#utthat exist in a set of occurrences of
some measure. If at least one occurrence differsagnitude from the others, the set of
rules exhibits variability; if no difference occutthen the set of rule does not exhibit
variability. When only one occurrence differs irzesifrom the others, the set exhibits
minimum variability; and the greater the total difnce in magnitude among the
occurrences, the greater the variability exhiblgdhe set of rules. If variability is seen
in this light, then its measure can be formulatedhe sum of the observed differences
among occurrences of a measure divided by the meminpossible sum of the
differences. This is known as variability coeffitcieand express by the equation 1
Variability Coefficient (VC) = OV/IMPV D
where: OV = Observed variation, MPV = Maximum pbésivariation

The value of VC always lies between 0 and 1. Stheee is no variation in set of rule
scores the OV become zero hence it is clear thab&@me zero(by equation 1) In case
of maximum variation among the rules scores, O¥gsal to MPV hence VC become 1
in this case.

The observed variability (OV) is the sum of the @dbie differences among
occurrences of the measure at hand. A matrix agraegt of the differences among a
group of scores is helpful in visualizing the cédtions used to derive OV. Statistically it
is the fact that, the maximum sum of differences iset of scores will occur if half the
scores have the lowest value contained in the rettlze other half carry the highest
value. For a comparison matrix of a data set Halftich consists of one uniform value
and half of which consists of a different uniforralve, only comparisons of the two
different values will yield nonzero remainders.

The derivation of MPV in (1) is based on the follog/reasoning: the maximum
sum of differences in a set of scores will occuhnaff the scores have the lowest value
contained in the set and the other half carry tighdst value. For an even number of
cases, the number of such comparisons is the nuofilseores in the group’s lower half

multiplied by the number of scores in the groupiper half, that |s(§) (g) and thus,
the number of non-zero comparisons will equal thease of half the cases in the data set

2
that is, (%) . The highest possible variability will consist thle product of this square
2

and the sum of the comparisons of the two valubasTfor a group of scores consisting
of an even number of cases, MPV can be calculaéallaws equation 2:
N

MPV = (3)2 R 2
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Where, N = group size and R = the range, thahesdifference between the highest and

lowest scores. For a group of scores consistirgnaddd number of cases, MPV can be
N-1

calculated by equation 3PV = (T) (?) R 3)

3.1.2. Homogeneity coefficient

A coefficient of homogeneity (HC) can be definedtas complement of VC; hence it is
calculated by equationHC =1 -VC 4)
Since the VC value lies between 0 and 1, the H@evalso lies between 0 and 1.

3.1.3. Calculation of HC and VC

Let us consider a relational data base R, andtafsessociation rules|RR,, R;,..., R,

on R with rule scorex,,x,, x3,..., x,respectively. OV in equation 1 is the sum of
absolute differences among the occurrence of thes rwhich is calculated by the
equation 5. A matrix arrangement of the differere@®ng a group of scores is helpful in
visualizing the calculations used to derive OV. Rbe set of rules, the matrix is
displayed in Table 1. The scores in Table lappedically along the table’s left as well
as horizontally along its top. For each row, thiisaepresent the difference between the
score on the left column and the other scoresdrs#ét. Each score on the horizontal list
is subtracted from each of the scores on the watrlist and the remainder for each
subtraction is recorded as an absolute value inirttexsecting cell. If no difference
emerges, a 0 is recordel = ¥|x; — x;| foralli, j (5)
The derivation of MPV in (1) is based on the foliow reasoning: the maximum sum of
differences in a set of scores will occur if h&ié tscores have the lowest value contained
in the set and the other half carry the highestieialet the least and highest score in
table 1 be namegandy; respectively. The MPV calculation is representetable 2.

3.2. Implementation

Let us consider a relational data base R, andt @f sessociation rules|RR,, Rs, ..., Rig

on R with scores 30, 35, 40, 45, 50, 55, 60, 68, 75, respectively. A matrix
arrangement of the differences among rule scoreslgul in visualizing the calculations
used to derive OV. For the above set of rules,ntlagrix is displayed in Table 3. The
QV value is calculated by equation 5 and its vdtuethe above set of rules is 820. The
derivation of MPV for the above set of rules isplliyed in table 4. The highest variation
will occur if the data take the following values, 35, 35, 35, 35, 75, 75, 75, 75, 75 and

the MPV = 1000 (by equation. 2) by applying OV avi&V value in equation ¥(C =

% = 0.82. And the HC value is given by equation =1 —-V(C =1 —0.82 = 0.28

Score | x4 X X3 X;. X,
X1 0 | Ix—x| | |x; — x5 1 — ;] |, — x|
X2 0 |2, — x5 |2, — x;] |2, — x5 |
X3 0 |x3 — x;] |3 — xp|
X 0 |2, — xp|
Xn 0

Table 1: Matrix arrangement of differences in rule scores
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Scores| y; | yi | yvi | - Yj- Yj
y, o] oo |y — vl ly: =
yi 0] 0 |y — ¥l |yi — il
yi 0 i — vl lyi — vl
¥j 0 |y =
Yj 0

Table 2: Matrix arrangement for MPV calculation

According to the user knowledge expectation the aferules generated from the
relational data base R using data mining tools. thisr set of rules VC and HC value
calculated as above, based on the values of V(H&die may conclude the interesting
set of rules

3C 35 40 45 5C 55 6C 65 7C 75
30 0 5 10 15 20 25 30 35 4C 45
35 0 5 10 15 2C 25 30 35 4C
40 0 5 1C 15 20 25 3C 35
45 0 5 1C 15 20 25 3C
5C 0 5 10 15 2C 25
55 0 5 10 15 2C
6C 0 5 1C 15
65 0 5 1C
7C 0 5
75 0

Table 3: Matrix arrangement of differences in a group scores

3C 3C 3C 30 3C 75 75 75 75 75
3C 0 0 0 0 0 45 45 45 45 45
30 0 0 0 0 45 45 45 45 45
30 0 0 0 45 45 45 45 45
3C 0 0 45 45 45 45 45
3C 0 45 45 45 45 45
75 0 0 0 0 0
75 0 0 0 0
75 0 0 0
75 0 0
75 0

Table 4: Matrix arrangement for MPV calculation
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4. Conclusion and future work
In this paper, we have presented a method by ditiexgrthe variability coefficient, the
value of VC is not depending on mean and variarecel hence the drawback on
coefficient of variation will be eliminated. VC de to 1 means the set of rules exhibit
more variations, and the rules produces more krag@eand they do not consistent with
actual knowledge due to the over whelming. Thispsus the Geng and Hamilton [9]
conclusion presented on their survey. That is mihie variation means that less
homogeneity. Hence less homogeneity set of ruley wlimide further to make
homogeneous set of rules. This work directs, wharést lies further subdividing of
data in hand possibilities. Implementing on bigads¢ts by the way of algorithm may
enhance this work.
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