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1. Introduction

It is well known that, the Bidirectional Associaiwemory (BAM) is a type of recurrent
neural networks which was introduced by Kosko fiL]LD88, who generalized the single
auto- associative Hebbian correlator to a two-layattern-matched heteroassociative
circuit. Recently, BAM neural networks have receivemarkable consideration because
of their potential applications in different fieldsich as automatic control engineering,
image processing, parallel computation, signal @ssing, optimization and associative
memories, and pattern recognition. Since theseicgtipins rely on the dynamical
behaviors of the equilibrium point of the BAM neluretworks, it is very important to
investigate the stability of BAM neural networksdaan large number of results have been
reported, see [2, 3, 5].Due to the finite switchépged of neuron amplifiers and the finite
speed of signal propagation, time delays are udabde in very large-scale integration
implementation of neural systems. The existencenoé delay may lead to some more
complicated dynamic behaviors such as oscillatibrergence, chaos, instability or other
poor performance of the neural networks. Therefdhe, equilibrium and stability
analysis of neural networks with time delays ha@eived much interest in recent years;
see [2-7, 10]. In many practical problems, the #ggk delay exists in the negative
feedback term of the system, such term is callakldge term. In fact, the leakage term
has also a great impact on the dynamical beha¥Vioewral networks. The authors in [6]
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pointed out the time delay in stabilizing negatieedback term has a tendency to
destabilize the system. In recent years, the #tabinalysis with time delay in the
leakage term has been studied in [2, 3, 4B@ked on the above discussions, the
stability problem for BAM neural networks with tirvarying delays and leakage delays
have been investigated in this paper. By constigcti Lyapunov-Krasovskii functional
and employing a delay decomposition approach, ficgift stability criterion is derived
for the addressed system in terms of linear matrqualities (LMIs), which can be
easily calculated by MATLAB LMI solver. Finally, aumerical example is provided to
show the effectiveness of the proposed method.

Notations: Throughout this papeR™ and R™" denotes thei-dimensional Euclidean
space and the set of allx n real matrices respectively. The superscfipdenotes the
transpose of the matriX. The notation{ > Y (respectivelyX > Y), whereX andY are
symmetric matrices, means thét—Y is positive semi-definite (respectively, positive
definite). The notation always denotes the symmetric block in one symmetatrix.l,,

is then x n identity matrix.||. || is the Euclidean norm iR™.

2. Problem description and preliminaries
Consider the following delayed BAM NNs with time+ymg delays and leakage delays
described as

u(t) = —Au(t — p) + Bof (v(t)) + Bif (v(t - T(t))) +1,

v(t) = —Cv(t - 0) + Dog(u(t)) + D1g (u(t — d(©))) +J, (1)
whereu(t) = [uy(t), ..., u,(®)]T € R® andv(t) = [v,(¢), ..., v, (t)]T € R™ are neuron
state vectors,A = diag{a,,a, ...,a,} > 0,C = diag{cy, ¢, ...,c,,} > 0 are diagonal
matrices with positive entries; > 0 andc; > 0,B, andD, are the connection weight
matrices, B; and D; are the delayed connection weight matricefs(,v(t)) =

[ (01O, s fn (2 O], G (®) = [61 (11 (©)), ., Gu(un(®))]”  denote  neuron
activation functions] = [I,1,, ...,1,]T and] = [J1,/3, ..., Jm]T are external inputs, the
leakage delayp = 0,0 = 0 are constants, the time-varying delays) andd(t) satisfy
0<t(t)<t and 0 <d(t) <d, wheret and d are positive constants. The initial
conditions of the system (1) are assumed to(B&¢ = ¢(s),s € [—1, 0],

v(s) = @(s),s € [—d,0].

Assumptions:
L L - . - _ fiw-f;w)
The neuron activation functiong;(.) and g;(.) satisfy [; S==—=
giw—-gi(v) < ki+
u—v

constants.

Assume that the neural network (1) has only oneilibgum point u* =
[ui, u3, ..., upl,v* = [v{,v3, ..., vm]. Then, we will shift the equilibrium points® andv*
to the origin. By using the transformatignit) = u(t) — u* andz(t) = v(t) — v*, the
system (1) into the following form:

y(t) = —Ay(t — p) + Bof(z(t)) + Bof (2(t —7(1))),
2(t) = —Cz(t — o) + Dog(y(©)) + Dag (y(t — d(®)), @)

+ —_—
< U ki <

, for any u,v € R,u # v, where [;,[,k; and k;" are positive real
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Wherg(2(0)) = [£i(21©), -, fn (zm ()], 9V (©) = [9:(31©), - 9 (O]
£ () = fi(7® +v*) = ), 0:(31(®) = 5iGi(©) +u) = Gi@w").  According
to the Assumption 2.1, one can obtain that % <Lk < %u) <k, (3)

fj(0) = g;(0)=0,i =1,2,..,n,j =1,2,..,m. In order to obtain the main result, we
need the following lemmas.

Lemma 2.1.[8] For any constant matri& € R™" M = MT > 0, scalarp > 0, vector
function w:[0,n] — R™ such that the integrations are well defined, tblofing

inequality holds( " a)(s)ds)TM( Jg w(s)ds) <7 [ 0T (s)Mw(s)ds.

Lemma 2.2.[9] Let M, P, Q be the given matrices such tigat- 0, then

p MT T -1

M —Q <0 e=P+MTQ'M<O.
Lemma 2.4.[10] LetD andN be real constant matrices of appropriate dimessimrmatrix
F(t) satisfiesFT (t)F(t) < I.
Then (i) for any scalas > 0,DF(t)N + NTFT(t)DT < 7DD + eNNT, (i) For any
P >0,2a"h <a’P~la+ bTPh.

3. Main results
Using a simple transformation, the model (2) has@uivalent form as follows

Sy —af y)ds| = —ay(®) + Bof (2(6)) + Buf (2(t - 7(®))),

d t
Lz -c ft_oz(s)ds] = —Cz(t) + Dog(y(t)) + D1g (y(t - d(t))). 4)
For representation convenience, we use the follgwistations:

-+
L, = diag{l{lf, .., ;If}, L, = diag {““1 %}

kT +k1 kn+kn

= diag{ki ks, ... k;k}, K, = dlag{ e

Now a delay-dependent stability analy3|s of dedlay'hAM NNs (4) is given in the
following theorem.

Theorem 3.1.For given scalars > 0,d >0,p>0,0 >00<6d<1 and0<y <1,

the delayed BAM neural networks (4) are globallyragtotically stable, if there exist
symmetric positive definite matrices?; > 0,P, > 0,0, >0(a=1,2,..,8),R, >
0(=12,..6),M,>0,N, >0,E, >0,(k=12), positive diagonal matrices
w,(l =1,2,3,4) and real matriced/;,U, of appropriate dimensions such that the
following LMIs hold:

0,;, L L, I3 0,;, L I, I3
_ * _M1 0 0 _ * _Ml 0 0
0, = * * —N, 0 <0, 6= * * —N, 0 <0
* * * —E1 * * * —E1

141



Stability Criteria for BAM Neural Networks With Tiex-Varying Delays and ...

Wi, Zq I, X3 Wi, Zq X, X3

*x =M 0 0 *x =M 0 0
y, = 2 <0, ¥, = 2 <0,
1 * * —N,; 0 2 * * e\ 0

* * * —E, * * * -E,

whereBgq,4 With entries :
@1'1 = _2P1A + Ql + Q3 + Q5 + pRS - 2L1W1, @1’7 = 2L2W1,

@1,9 = ATP1A' 92,2 = —2L;W,, @2,8 = 2L,W,, @3,3 =—01— Qs @4,4 = —03,

@4,6 = —ATUf, @5,5 = —Q5 + Qe' @6,6 = 5dR1 + (d — 5d)R2 _ 2U1,
@77 = Ny —2W; + E;, Ogg = Ny —2W, + E;, Og9 = ATMA — %Rs,

I,=[P(By+B) 0 0 0 0 0 0 0 0],
r,=[0 0 0 0 0 0 pIp, DFpP, 0],

LMI 1 entries:
-1 1 2 1 1
011 = §1R1:@1,2 = §R1’1®2'2 = —15R1:®2,5 = @R1:@3,3 = T i sd R3,
O35 = 355a Rz 955 = — 55 R~ g e
LMI 2 entries:
-1 1 2 1
G)1,1 = §1R1:@1,5 = aRp(?z,z = —mRz:lezs = dIWRz:
025 = asa R 033 = ~ 75 Re 055 = —5g R = g5 Re:

Yy With entries :

Wi1=—-2P,C+Q;+ Qs+ Q7+ 0Rg — 2K;W3, ¥, ; = 2K; W3,

Wi = CTPZC, Wy = —2K3 Wy, W = 2K Wy, W33 = —Q2 — Qg, a4 = =04,
Wyo = —CTU;,Wss = —Q7 + Qg, Ve = YTR3 + (1 — yT)R, — 2U,,

W, , =My —2W3 + E,Wgg = My — 2W, + E;,Woo = CTN,C — %R6,
=0 0 0 0 o o BIp, BTP, 0],

¥, =[P,(Dg+D;) 0 0 0 0 0 0 0O 0],

¥;=[0 0 0 0 0 U,(Dy+Dy) 0 0 0]

LMI 3 entries:
W =R, W, =Ry W,, = — =Ry, Wy = —Ry,Was = ———R
1,1 — yT 3y 1,2 — yT 3y 122 — yT 3 25 — yT 3y I'3,3 — -yt 4y
1 1 1
Was = = Ra, W55 = =Ry — —R,.
LMI 4 entries:
-1 1 _ 2 1 1
l'pl,l - %RS'LPI,S - ;RS'LPZ,Z - _T—)/‘L' R4'LPZ,3 - T—yT R4, l'pZ,S - T—yT R4-'
1 1 1 .. .
Yy, = T Ry, Wss = —;Rg . R,. The remaining entries are zero.

Proof. Choose the Lyapunov-Krasovskii functional as felo
V(&) = Vi(6) + Vo(8) + V3 (t) + Va(t),

t T t
whereVy () = [y(®) = A [ y()ds| Pi[y(®) -4 [, ¥(s)ds]
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+ [z(t) -C ftt_az(s)ds]T P, [Z(t) -C ftt_az(s)ds],

Va(®) = [, ¥ (9)Quy()ds + [, 27 (8)Qx2(s)ds + [, ) y" (5)Qay(s)ds
+ftt_ozT(s)Q4z(s)ds

Va() = J_su " ()Qsy()ds + [, yT()Qsy(s)ds + [, .
+ [ 27 (5)Qe2(s)ds,

Va(t) = [%5, J', o VT R ()ds dO + [ [ 37 ()Ryy(s)ds d6
+ f_‘)ﬂ It o 2T ($)Rsz(s)ds d8 + 1" [T 27 (s)Ryz(s)ds d,

0 t 0 t
f_p Jrg VT (IRsy(s)dsdb + [__ [ , 2" (s)Rgz(s)ds db.
Let £ be the infinitesimal operator &f(t) and using Lemma 2.1, we have

2" (s)Q7z(s)ds

LV(E) = LV,(£) + LV, (t) + LV5(t) + LV, (0), (6)
where

T
Lvi(®) = 2|y — A [ y(s)ds| Pi[~Ay(®) + Bof(2(0)) + Bof (2(t — =(1)))]
[2) = ¢ £, 2()ds| P, [~C2(0) + Dog(y(®) + Dag (y(¢ - d(®)))], (7)
LV,(@) = y"(®)[Q; + Q3]y(t) —y"(t — d)Qy" (t —d) —y"(t — p)Q3y" (t — p)
+2T(O[Q2 + Q4lz(t) — 2" (t = 1)Q2z" (t — 1) — 2" (t — 0) Q42" (t — 0), (8)

LV5(t) = y" (£)Qsy(t) — y" (t — 8d)Qsy(t — 8d) + y” (t — 5d)Qey(t — 5d)
—y"(t = d)Qey(t — d) + 2" ()Q;2(t) — 2" (t — y1)Q72(t — y7)
+27(t — y1)Qgz(t — y7) — 2" (t — 1)Qpz(t — 1), (9)

LV, (8) = 8dyT (DR () — [ 5, 7" (HRY(s)ds + (d — 8d)yT ()R, (t)

— [ YT )Ry (s)ds + yrzT (ORs2(8) — [} 27 (5)Ry2(s)ds

+ (r = yD)2T (OR2(t) — [T 27 (s)Ryz(s)ds + py (D)Rsy(t)

~2(5, v()as) Rs (J,¥(s)ds) + 02" (B)Rsz(t)

1

——( I z(s)ds) Rg ( I z(s)ds) (10)
In addition, for anyn xn diagonal matricesi, > 0 (I = 1,2,3,4), the following
inequalities hold:

[ y(©) ] LW, —L2W1” y(t) (11)
lg(y®) | —LW; g(v®)] =

[ y(t—d®) L1W2 —L2W2 Y(t —d(®)) "
9 (y(t — d(t)))] —L,W; ] [ (t — d(t)) (12)
[ z(t) |[ Kaws  —K,Wws)[ z(D)

|, [f(zco)] 3
[ 2(t—®) i kW, —K2W4 2(t —(®)

£ (a(t - 7)) L-KaWs ][ T0)) 19

Furthermore, the following equallty holds for anyar matricesU; and U, with
compatible dimensions
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0 =257 (), {~Ay(t - p) + Bof (2(D)) + Buf (2(t — 7())) - 9(®)}, (15)
0 = 22T ()U, {~Cz(t — 0) + Dog(y(®)) + D1g (¥(t — d(®))) - 2(0)}. (16)
Case 1:If 0 < d(t) < &d, we have

— [ sV T©RY(E)ds — [0 T ()R, (s)ds

= — e TR E)ds = [0 9T (R (s)ds — [ 9T (5)Ryy(s)ds.

Note thatR; > 0 and from Lemma 2.1, it follows

ft ay VT Ry (s)ds < g ~[y(®) — y(t — d(@®)]R.[y(®) — (¢ — d(®))], a7
aa ITOR()ds < 55 [y(e - d(®©) = y(t — SD]R: [y(¢ - d(®) -
y(t _fd)] (18)
t-od

—J_ YRy (s)ds < —[ (t —6d) —y(t — )R, [y(t — 6d) — y(t — d)]. (19)

Substituting (7) — (10), (15) - (19) into (6) andbsacting (11) — (14) from (6), we obtain

LV (®) < { (00, + P1(Bo + B)M1 *(By + By) P, + (Dg + D )P,N; ' P, (Do + D;)
+U;(Bo + B)ET ' (B + B U133 (1.

Then, by Lemma 2.4, we have

LV(t) < {1 (6)0141(0), (20)

wherg{ () = [y"(t) y"(t—d(®) y"t-d) y"(t-p) y'(t—-6d) Y

g"®) " ((t-d®)) (5, ¥sads) ]
and®, = 0, ; + P1(By + By)M;'(By + B;)"Py + (D + D{)P,N; ' P,(Dy + D,)
+U;(By + B1)E; *(By + B1)" Uy}

Case 2:If 6d < d(t) < d, we have

- I 53" (DRI (E)ds — o j 37 ($)Ry(s)ds

= — sV T OR(E)ds = [ YT (RY(S)ds = [, 3T (IRy(5)ds.
Note thatR, > 0 and from Lemma 2.1, it is similar as Case 1, weeha

LV(t) < (£)0,81 (). (21)
Case 3:If 0 < t(t) < yt, we have

— [, ZT(©ORsz(s)ds — [,-)" 27 (s)Ra2(s)ds

= —f oy T ORaz(9)ds — [0 2T ()Ry2()ds — [Z)T 2T ()Ry2(s)ds.
Note thatR; > 0 and from Lemma 2.1, it follows
- w0 2T (OR37(s)ds < ‘—1 ~[2(6) — z(t — 7(8))]Rs[2(0) — z(t — 7(®))], (22)
- _;T(t) 7T (s)R32(s)ds < — [Z(t —1(t)) — z(t —y1)|Rs
[Z(t — T(t)) —z(t — )/T)] (23)

— [ 2Oz (s)ds < - [2(t = y0) = 2(t = DIR[2(t —yD) = 2(t = D] (24)

Substltutlng (7) — (10), (15) (16), (22) — (24)an(6) and subtracting (11) — (14) from

(6), we obtain

LV(t) < {5 (W + (Bo + B)"PiM; 'P(By + By) + P,(Dy + D1)N; ' (Dg + DI)P,
+U, (Do + D;)E; *(Dg + D1 U, 30, (8).
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Then, by Lemma 2.4, we have
LV (t) < G5 (O)P182(0), (25)

where¢? (6) = [z7(t) zT(t—()) 2T(t—1) 2z'(t—0) 2Z'(t—yr) 27(0)

fT(z@®) fT (z(t - T(t))) ( . Uz(s)ds) 1
and¥; = ¥, ; + (By + B))"PiM; P, (By + By) + P,(Doy + D1)N; *(Dg + DI)P,
+U,(Dy + D1)E;* (Do + D) U,.
Case 4:f yr < 1(t) < 1, we have
- 2T (s)R32(s)ds — f YT ()R, 2(s)ds

t— y‘c
= — [ 2T ($)Rsz(s)ds — t_ry(i) 27 ()Ry2(s)ds — [T 27 (s)Ry2(s)ds.
Note thatR, > 0 and from Lemma 2.1, it is similar as Case 3, wesha
LV(t) < G (0)W25,(1). (26)
Hence, from (20) and (21), we have
LV(t) < =g (O]} (1), Vi=12, (27)

where®; = —0; > 0.

Hence, from (25) and (26), we have

LV(t) < = OW51@), Vvi=12, (28)
where¥; = —¥; > 0.

Taking expectation on both sides of (27) and (28) iategrating fron® to t, we get

t
E[V(D)] + f E[ZT (5)0744(5) + T ()W 45(s)]ds < E[V(0)] < 0, > 0,V i = 1,2.
Applying Len?ma 2.1, we have

2 T
IE{ A f:py(s)ds } = IEHA ftipy(s)ds] [A ftipy(s)ds]
t Tr .t
< Anax(A®E d d
< ) ﬂ | 5O s] [ | YO s]

max(Az)
mm(Qs)Eﬂft py(s)ds] U; py(s)ds_}

Amax(Az) T ]} Ainax (A 2)
=r Amin(Q3) k {[J;_py ($)Qy()ds|p<p7 00 Amin(Q3) EWV(®)]

a4

Similarly, ]E{”C e Z(s)ds” }<a;wxgo ))]E[V(O)] £ > 0. Further
min 4

Efye) - af yoas|| =y - af yoas| [y - afL,yas]]
< EmOl _ EVO] _ EVO)
Amin(Pl) Amm(Pl) lmtn(Pl)

By OI7) = E{ |y - A [, yas + A [ yo)as|| } < 26{[|a [ yesras]| ]

E[V(0)], t=>0.

Hence, it can be obtained that
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+2E{”y(t) —AJ. pY($)ds 2} < p2me® ) 42 EXOL o ¢ > 0,

Amin(Q3) Amin(P1)
Similarly, E{||z(0)[|?} < & Amax(c )]E[V(O)] +2 ”5“’((0)]) <o, t >0
]E{||)’(t)(||22)+ ||Z(t)||(}2)S
Amax(A Amax(C 2 2 2
( Amin(Q3) to Amin(Q4) min{lmin(Pl)'Amin(Pz)}) X [al]E”d)”T* + aZIE”(p”d*] < o
where

a, = Amax(Pl)(l + pzmaxieAai) + dlmax(Ql) + pAmax(Q3) + 5d/1max(Q5)
(d - Sd))‘max(QS) + (5d)21max(R1) + (d - Sd)zﬂ-max(RZ)t
a = Amax(PZ)(l + azmaxiEACi) + TAmax(QZ) + O'Amax(QAL) + yTAmax(Q6)
(T - VT)Amax(Q7) + (VT)ZAmax(RS) + (T - VT)ZAmax(RA})-
This implies that the trivial solution of (4) isdally stable. Thus, considering the
continuity of activation functiorf(.), g(.), the solutionsy(t) = y(t,0,¢) andz(t) =
z(t,0, ) of system (4) is bounded ¢f, ). Considering (4), we know tha||y(t)||?
and E||z(¢)||> are bounded o1i0, ), which leads to the uniform continuity of the
solutiony(t) andz(t) on [0, ). By Barbalat’s lemma [6], it holds th&@{|y(t)||> — 0
andE||z(t)||> — 0 ast — . Hence the system (4) is globally asymptoticalgbst in
the mean square.

4. Numerical example

In this section, a numerical example is providedllisstrate the effectiveness of the
proposed method.

Consider the delayed BAM neural networks (4) wité following parameters

_I3 _[04 _ [ -03] ~_[4 -

A_[o ]BO 06040505] B = [ —0.2]'6_[0 ]DO [ —05]
D= "oa 06] L, =0, L2=051 K, = 0l, K2=0.51.

The actlvatlon functions are descrlbedg(y/(t)) = |y(t) + 1| —|y(t) —1|] and

f(z(®) = |z(t) + 1| — |z(t) — 1]]. The tlme—varylng delays are taken as

d(t) =0. 25 + 0.25sin (t) and 7(t) = 0.25 + 0.25sin (t). The leakage delay and the
time-varying delays satisfy = 0.1,0 = 0.1,d = 0.5,7 = 0.5,y = 0.1 andé = 0.1.

By using the Matlab LMI solver, in order to seetttt®e LMIs given in Theorem 3.1 is
feasible. Therefore, it follows from Theorem 3.attthe delayed BAM neural network
(4) is globally asymptotically stable in the megunare.

5. Conclusion

In this paper, the stability problem of BAM neungtworks with time-varying delays and
leakage delays has been studied. By constructinguitable Lyapunov-Krasovskii
functional and employing a delay decomposition apph, a sufficient stability criterion
has been obtained for the given addressed systBeseTconditions are expressed in
terms of LMIs, which can be easily calculated by MAB LMI solver. Finally, a
numerical example has been provided to show tlee®fEness of the proposed method.
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