Intern. J. Fuzzy Mathematical Archive Vol. 7, No. 1, 2015, 97-102 ISSN: 2320 –3242 (P), 2320 –3250 (online) Published on 22 January 2015 www.researchmathsci.org

International Journal of **Fuzzy Mathematical Archive**

Majority Neighbourhood Polynomialsofa Graph

J. Joseline Manora¹ and I.Paulraj Jayasimman²

¹PG & Research Department of Mathematics, T.B.M.L College, Porayar 609, Nagai Dist Tamilnadu, India

²Department of Mathematics, Indira Institute of Engineering & Technology, Thiruvallur-631203, Tamilnadu, India.e-mail: ipjayasimman@gmail.com Corresponding Author

Received 4 November 2014; accepted 4 December 2014

Abstract. In this article, majority neighborhood polynomial of graph G is introduced. The majority neighborhood polynomial $N_M(G, x)$ of a graph G of order n is defined as $N_M(G, x) = \sum_{i=N_M}^{|V(G)|} n_M(G, i) x^i$ where $N_M(G)$ is the majority neighborhood number of a graph G. For this majority neighborhood number $N_M(G)$, majority neighborhood polynomial of G is defined and studied for some standard graphs. Also coefficients of majority neighborhood polynomials of a graph G are obtained.

Keywords: Neighborhood polynomial and Majority neighborhood polynomial

AMS Mathematics Subject Classification (2010): 05C90

1. Introduction

By a graph, we mean a finite, simple, undirected and connected graph with p vertices and q edges. We follow the notation and terminology given by Haynes et al. [2]. The open neighborhood N(v) of a vertex v is the set of vertices adjacent to v and the closed neighborhood of a vertex v is $N[v] = N(v) \cup \{v\}$. Let $\Delta(G)$ and $\delta(G)$ be the maximum and minimum degree of G respectively. A set S of vertices in a graph G is a neighborhood set if $_{G=\bigcup_{v\in S}}\langle N[v] \rangle$, where $\langle N[v] \rangle$ is the subgraph of G induced by v and all vertices adjacent to v. The neighborhood number $n_0(G)$ of G is the minimum number of vertices in a neighborhood set of G. These parameter has been studied by E. Sampathkumar et al. [5]. Let G = (V, E) be a finite graph with p vertices and q edges. A subset $S \subseteq V(G)$ of vertices in a graph G is called a majority dominating set if at least half of the vertices of V(G) are either in S or adjacent to vertices of S, i.e. $|N[S]| \ge \left\lceil \frac{|V(G)|}{2} \right\rceil$.

The minimum cardinality of the minimal majority dominating set is called the majority domination number and it is denoted by $\gamma_M(G)$. A set $S \subseteq V(G)$ is called a majority neighborhood set if $G_M = \bigcup_{v \in S} \langle N[v] \rangle$ contains at least $\left\lceil \frac{p}{2} \right\rceil$ vertices and at least $\left\lceil \frac{q}{2} \right\rceil$ edges.

Majority Neighbourhood Polynomials of a Graph

A majority set S is called a minimal majority neighborhood set if no proper subset of S is a majority neighborhood set. The minimum cardinality of a majority neighborhood set is called the majority neighborhood number of G and is denoted by $n_M(G)$. These parameters are studied by Swaminathan and Joseline Manora [6,7].

Proposition 1.1. [8] For $G = K_P$, $K_{1,p-1}$, $p \ge 2$, $F_p \ge 3$ and W_p , $P \ge 5$ then $n_m(G) = 1$.

Proposition 1.2. [8] For a graph $G = C_p$ a cycle on p vertices, $P \ge 5n_m(G) = \left[\frac{p}{4}\right]$

Corollary 1.1. [8] Let $G = P_p$ be a path on p vertices then $n_m(G) = \left\lceil \frac{p-1}{4} \right\rceil$.

Definition 1.1. [9] Let N(G, i) be the family of neighborhood sets of a graph G with cardinality iand let n(G, i) = |N(G, i)|. Then the neighborhood sets polynomial N(G, x) of G is defined as $N(G, x) = \sum_{i=n_0}^{|V(G)|} n(G, x)x^i$, where $n_0(G)$ is the neighborhood number of G.

2. Majority neighborhood polynomial

Definition 2.1. Let $N_m(G,i)$ be the family of majority neighborhood sets of a graph G with cardinality i and let $N_M(G,i) = |N_M(G,i)|$. Then the majority neighborhood sets polynomial $N_M(G,x)$ of G is defined as $N_M(G,x) = \sum_{i=n_M}^{|V(G)|} n_M(G,x) x^i$, where $n_M(G)$ is the majority neighborhood number of G.

Example 2.1.

- i. Let G be the Cycle with n=5 then the majority neighborhood polynomial is $N_M(C_5, x) = x^5 + 5x^4 + 10x^3 + 10x^2$.
- ii. Let G be the Path with n=5 then the majority neighborhood polynomial is $N_M(P_5, x) = x^5 + 5x^4 + 10x^3 + 10x^2 + 3x$.

Proposition 2.2. Let $G = K_p$, $p \ge 3$ be a complete graph then $n_M(G) = 1$. The majority neighborhood polynomial of G is $n_M(K_p, x) = (1+x)^p - 1$.

Theorem 2.1. If a graph G consist of m components $G_1, G_2, G_3...G_m$ then $N_M(G, x) = \prod_{i=1}^m N_M(G_i, x) \cdot$

Proof: Suppose G has two components G_1 and G_2 . For $k \ge n_M(G)$, a majority neighborhood set of k vertices in G. The majority neighborhood set of k vertices in G arises by choosing a majority neighborhood set of j vertices in G_1 and majority neighborhood set of k-j vertices in G_2 . The number of way doing this over all

I. Paulraj Jayasimman and J.Joseline Manora

 $j = n_M(G_1)....|V(G_1)|$ is exactly the coefficient of x^k in $N_M(G_1, x)N(G_2, x)$. Hence both side of the above equation have the same coefficient, so the identical polynomial.

Corollary 2.1. Let $\overline{K_p}$ be the totally disconnected graph with p vertices. Then $N_{\mathcal{M}}(\overline{K_p}, x) = x^p$.

Join of two connected graphs

Theorem 2.4. Let G_1 and G_2 be the connected graphs of order p_1 and p_2 respectively. Then $N_M(G_1 \vee G_2) = ((1+x)^{p_1} - 1)((1+x)^{p_2} - 1) + N_M(G_1, x) + N_M(G_2, x)$.

Proof: Let G_1 and G_2 be the connected graphs of order p_1 and p_2 respectively. Let $1 \le i \le p_1 + p_2$. To determine the majority neighborhood sets $N_M(G_1 \lor G_2, i)$. Let i_1, i_2 be the natural numbers such that $i_1 + i_2 = i$. Then clearly for every majority neighborhood sets of G_1 and G_2 , $N_1 \subseteq V(G_1)$ and $N_2 \subseteq V(G_2)$ such that $|N_j| = i_j$, j = 1,2. Every majority neighborhood set of $G_1 \lor G_2$ of size i contains sum of the degree of the vertices is p-1, where $p = |V(G_1 \lor G_2)|$. Moreover if $N_M \in N_M(G_1, i)$ then N_M is the majority neighborhood sets of $(G_1 \lor G_2)$ of size i. The same is true for every $N \in N_M(G_2, i)$. Thus $N_M(G_1 \lor G_2) = ((1 + x)^{p_1} - 1)((1 + x)^{p_2} - 1) + N_M(G_1, x) + N_M(G_2, x)$.

Corollary 2.2.

- (i) $N_M(K_{1,p-1}, x) = x^{p-1} + x(1+x)^{p-1}$
- (ii) If $p \ge 4$ then $N_M(W_p, x) = x(1+x)^{p-1} + N_M(C_{p-1}, x)$
- (iii) $N_M(F_p, x) = x((1+x)^{p-1} 1) + N_M(P_{p-1}, x) + x$

Proof:

- (i) By theorem 2.4, for $G_1 = K_1$ and $G_2 = \overline{K_{p-1}}$
- (ii) Since $W_p = K_1 \vee C_{p-1}, p \ge 5, G_1 = K_1 \text{ and } G_2 = C_{p-1}$
- (iii) Since $F_p = K_1 \vee P_{p-1}$, $p \ge 3$. $G_1 = K_1$ and $G_2 = P_{p-1}$ we get the result.

Proposition 2.1. If the graph G is a Double star graph then the majority neighborhood

polynomial of a graph is
$$N_M(D_{r,s}, x) = \begin{cases} (1+x)^p - \sum_{k=1}^{\lfloor \frac{d}{2} \rfloor^{-1}} {t \choose k} x^k & \text{, if } s \ge r+2 \\ (1+x)^p - \sum_{k=1}^{\lfloor \frac{d}{2} \rfloor^{-1}} {t+1 \choose k} x^k & \text{, if } s \le r+1 \end{cases}$$

Proof: Let G be a double star (Dr,s). p = r + s + 2; q = r + s + 1. Let u_1 and u_2 be the centers of G which have r, s pendent vertices respectively in its neighborhood. Let t be the total number of pendent vertices and t = r + s. For a double star Dr,s, $n_M(D_{r,s}) = 1$. Case (i) $s \le r + 1$.

Majority Neighbourhood Polynomials of a Graph

Let $t = \{t_1, t_2, t_3, \dots, t_n\}$ be the pendent vertices. If $s \le r + 1$ then $d(u) \ge \left\lceil \frac{q}{2} \right\rceil$ and $(v) \ge \left\lceil \frac{q}{2} \right\rceil$, therefore all the combinations of the sets which contains the centre vertex with cardinality 1 to p. $d(t_i) \le \left\lceil \frac{q}{2} \right\rceil$, $i = 1, 2, 3, \dots, n$, therefore the combination of the sets which contains only the pendent vertices with the cardinality 1 to $\left\lceil \frac{q}{2} \right\rceil - 1$ is not a majority neighborhood set. Hence $pC_1x^1 + pC_2x^2 + pC_3x^3 + \dots + pC_px^p - tC_1x^1 - tC_2x^2 - \dots - tC_{\left\lceil \frac{q}{2} \right\rceil - 1}$ **Case (ii)** $s \ge r + 2$ If $s \ge r + 2$, then the any one of the center vertex of the degree $d(u_i) < \left\lceil \frac{q}{2} \right\rceil$, i = 1 or 2. It

does not cover the at least $\left[\frac{q}{2}\right]$ edges. Therefore the combinations of the set which contains the pendent vertices and center vertex u_i , i = 1 or 2 not a majority neighborhood sets.

Hence
$$pC_1x^1 + pC_2x^2 + pC_3x^3 + \dots + pC_px^p - (t+1)C_1x^1 - (t+1)C_2x^2 - \dots - (t+1)C_{\left\lceil \frac{q}{2} \right\rceil^{-1}}$$

$$\therefore N_M(D_{r,s}, x) = \begin{cases} (1+x)^p - \left((tC_1x^1) + (tC_2x^2) + \dots + \left(tC_{\left\lceil \frac{q}{2} \right\rceil^{-1}} \right) \right) & \text{if } s \ge r+2 \\ (1+x)^p - \left(((t+1)C_1x^1) + ((t+1)C_2x^2) + \dots + \left((t+1)C_{\left\lceil \frac{q}{2} \right\rceil^{-1}} x^{\left\lceil \frac{q}{2} \right\rceil^{-1}} \right) \right) & \text{if } s \le r+1 \end{cases}$$

Remark: The join of two totally disconnected graphs is a complete bipartite graph and the resultant graph has no triangles.

3. Majority neighborhood sets polynomial of a complete bipartite graph

Proposition 3.1. [7] If G is a bipartite graph without isolates, with bipartition $\{V_1, V_2\}$ of V(G) the $n_M(G) \le \min\{\left[\frac{m}{2}\right], \left[\frac{n}{2}\right]\}$. Let $G = k_{m,n}$, $m \le n$ be the complete bipartite graph and $N_M(G, i)$ be the family of majority neighborhood sets of $K_{m,n}$ with cardinality i. We can determine the family of majority neighborhood sets of $K_{m,n}$ as follows.

The complete bipartite graph G =K_{m,n}, $m \le n$ is the join of two totally disconnected graphs $G_1 = \overline{K_m}$ and $G_2 = \overline{K_n}$ with vertex set V(G₁) and V(G₂).

Since $n_M(G) = \min\{|V_1|, |V_2|\}, m = |V_1|, n = |V_2|, n_M(G) = m$ for $m \le n$. Observe that every majority neighborhood set of $G \subseteq V_1$ or V_2 or both V_1 and V_2 .

Some majority neighborhood polynomial of Complete bipartite given

$$N_{M}(k_{2,2}, x) = x^{4} + 4x^{3} + 6x^{2} + 4x$$
$$N_{M}(k_{2,3}, x) = x^{5} + 5x^{4} + 10x^{3} + 10x^{2} + 2x$$
$$N_{M}(k_{2,4}, x) = x^{6} + 6x^{5} + 15x^{4} + 20x^{3} + 15x^{2} + 2x$$
$$N_{M}(k_{2,5}, x) = x^{7} + 7x^{6} + 21x^{5} + 35x^{4} + 25x^{3} + 11x^{2} + 2x$$

I. Paulraj Jayasimman and J.Joseline Manora

$$N_{M} (k_{2,6}, x) = x^{8} + 8x^{7} + 28x^{6} + 56x^{5} + 70x^{4} + 56x^{3} + 13x^{2} + 2x$$

$$N_{M} (k_{2,7}, x) = x^{9} + 9x^{8} + 36x^{7} + 84x^{6} + 126x^{5} + 126x^{4} + 49x^{3} + 15x^{2} + 2x$$

$$N_{M} (k_{3,3}, x) = x^{6} + 6x^{5} + 15x^{4} + 20x^{3} + 15x^{2}$$

$$N_{M} (k_{3,3}, x) = x^{7} + 7x^{6} + 21x^{5} + 35x^{4} + 35x^{3} + 21x^{2}$$

$$N_{M} (k_{3,5}, x) = x^{8} + 8x^{7} + 28x^{6} + 56x^{5} + 70x^{4} + 56x^{3} + 3x^{2}$$

$$N_{M} (k_{3,6}, x) = x^{9} + 9x^{8} + 36x^{7} + 84x^{6} + 126x^{5} + 126x^{4} + 84x^{3} + 3x^{2}$$

$$N_{M} (k_{3,7}, x) = x^{10} + 10x^{9} + 45x^{8} + 120x^{7} + 210x^{6} + 252x^{5} + 210x^{4} + 85x^{3} + 3x^{2}$$

$$N_{M} (k_{3,8}, x) = x^{11} + 11x^{10} + 55x^{9} + 165x^{8} + 330x^{7} + 462x^{6} + 462x^{5} + 330x^{4} + 108x^{3} + 3x^{2}$$

$$N_{M} (k_{4,5}, x) = x^{9} + 9x^{8} + 36x^{7} + 84x^{6} + 126x^{5} + 126x^{4} + 84x^{3} + 6x^{2}$$

$$N_{M} (k_{4,5}, x) = x^{9} + 9x^{8} + 36x^{7} + 84x^{6} + 126x^{5} + 126x^{4} + 84x^{3} + 6x^{2}$$
For example: Let $G = K_{4,6}$ we investigated the n_{M} set if G with different cardinality i=1,2,3... where $i = n_{M} (G)$. The majority neighborhood polynomial G is obtained as
$$N_{M} (k_{4,6}, x) = x^{10} + 10x^{9} + 45x^{8} + 120x^{7} + 210x^{6} + 252x^{5} + 210x^{4} + 120x^{3} + 6x^{2}$$
In this polynomial there are $6n_{M}$ set of cardinality 2, 120 n_{M} set of cardinality 3, 252.
$$210,45,10,1 n_{M}$$
 sets of cardinality 4,5,6,7,8,9 and 10 respectively.

Observation 3.1. Total number of minimum cardinality majority neighborhood sets is $mC_{\lfloor \frac{m}{2} \rfloor}$.

Theorem 3.2. Let G_1 and G_2 be the totally disconnected graph with the vertex set V_1 and V_2 respectively.

Then $N_M(K_{m,n}, x) = \begin{cases} (1+x)^{m+n} - \sum_{k=1}^{\left\lceil \frac{m+n}{2} \right\rceil^{-1}} {m+n \choose k} x^k , & \text{if } m = n \\ \sum_{k=\left\lceil \frac{n}{2} \right\rceil}^{m+n} {m+n \choose k} x^k + {m \choose \left\lceil \frac{m}{2} \right\rceil} + \sum_{k=\left\lceil \frac{m}{2} \right\rceil^{+1}}^{\left\lceil \frac{n}{2} \right\rceil^{-1}} {m+n \choose k} x^k , & m \le n \end{cases}$

3.1. Coefficients of majority neighborhood sets polynomial

In this section we obtain some properties of the coefficient of the majority neighborhood polynomial of a graph. By the definition of majority neighborhood set polynomial, we have the following results.

Theorem 3.1.1. Let G be a graph with |V(G)| = p. Then

(i) If G is connected , then $N_M(G, p) = 1$ and $N_M(G, p - 1) = p$

Majority Neighbourhood Polynomials of a Graph

- (ii) $N_M(G, i) = 0$ if and only if $i < N_M(G)$ or i > p.
- (iii) $N_M(G, x)$ has no constant term.
- (iv) $N_M(G, x)$ is strictly increasing function in $[0, \infty)$.
- (v) Let G be a Graph and H be any induced subgraph of G.

then deg $(N_M(G, x)) \ge$ deg $(N_M(H, x))$.

4. Conclusion

In this paper, we have introduced new type of neighborhood polynomial of a graph. For further investigation corresponding product of two graphs, cycle, path, K- regular graph majority neighborhood polynomials.

REFERENCES

- 1. F.Harary, Graph theory, Addision-Wesley Reading MA, 1969.
- 2. T.W.Haynes, S.T.Hedetniemi and P.J.Slater, Fundementals of domination in graphs, Marcel Dekker. Inc., New York, 1998.
- 3. V.Manimozhi and V.Kaladevi, On characteristic polynomial of directed divisor graphs, *International Journal of Fuzzy Mathematical Archive*, 4(1) (2014) 47-51.
- 4. E.Sampathkumar and H.B.Walikar, The connected domination of a graph, *Jour. Math. Phy. Sci.*, 13(6) (1979) 607-613.
- 5. E.Sampathkumar and P.S.Neeralagi, Neighborhood number of a graph, *Indian J. Pure. Appl. Math.*, 16(2) (1985) 126-132.
- 6. E.Sampathkumar and P.S.Neeralagi, Independent, perfect and connected neighborhood number of a graph, *Journal of Combinatorics Information and System of Science*, 19(3-4) (1994) 139-145.
- 7. V.Swaminathan and J.Joseline Manora, Majority dominating sets in graphs-I, *JARJ*, 3(2) (2006) 75-82.
- 8. J.Joseline Manora and V.Swaminathan, Majority neighborhood number of a graph, *Scientia Magna*, 6(2) (2010) 20-25.
- 9. J.Joseline Manora and I.Paulraj Jayasimman, Neighborhood sets polynomial of a graph, *International Journal of Applied Mathematical Sciences*, 6(1) (2013) 91-97.