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Abstract. Dempster Shafer Theory (DST) is a branch of Mathi@sahat concerns
combination of empirical evidence in an individuaihd in order to construct a coherent
picture of reality and offers an alternative todtt@nal probabilistic theory for the
mathematical representation of uncertainty. Natiarguage information could naturally
been expressed by a membership function. Intugtimnifuzzy sets, with independent
memberships and non-memberships are generalizafidinzzy sets. Out of several
higher order fuzzy sets, the Intuitionistic FuzatsS(IFS) have been found to be highly
useful to deal with vagueness. In this paper, we&keman investigation to extract
intuitionistic fuzzy evidence with non consonantdb elements based on random set
theory and evidence theory. Some examples aredqedviere to show the robustness of
the proposed method.

Keywords: Random set theory, Dempster-Shafer theory, innigi@ fuzzy sets, fuzzy
focal elements.
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1. Introduction

Probability theory is proposed only for randomnesgertainty. To overcome the
constraint of probabilistic method, Dempster putvard a theory in 1976 and now it is
known as Evidence Theory (or) Dempster- Shafer mhéDST). The D-S theory of
evidence one of the most popular uncertainty tiesassed in many areas, such as expert
systems, pattern classification , information fasi8], which was first developed by
Dempster [3] and later extended and refined by&Hal. In D-S theory, the information
given by sensors or experts can be described byfdte elements on a frame of
discernment and the corresponding Basic Probabfisgignments (BPA) [1]. The
determination of BPA is an important problem in thelti source information fusion.
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Many practical source applications of multisourctimation fusion problems usually
involve a kind of important information with intighistic fuzzy continuity and relativity,
which usually comes from the natural language qfeets or observers, like tallness or
smallness, pleasure or pain, cold or hot etc. Kinid of information could naturally been
expressed by a non-membership function. So we teeektract intuitionistic fuzzy
evidence from fuzzy information. In this paper, a&thod is proposed to extract
intuitionistic fuzzy evidence with non consonantedl elements based on random set
theory. Some examples are given to show the geétyemaid the efficiency of this
method.

2. Preliminaries
2.1. Dempster-Shafer theory (DST) [7]
Dempster-Shafer Theory (DST) is a mathematicalrthebevidence. In a finite discrete
space, Dempster-Shafer theory can be interpretadyaseralization of probability theory
where probabilities assigned to sets as opposedutbially exclusive singletons. In
traditional probability theory, evidence is asstamiwith only one possible event. In
Dempster-Shafer Theory, evidence can be associgtbdmultiple possible events. A
frame of discernment (or simply a frame) usuallyhated a©is a set of mutually
exclusive and exhaustive propositional hypothesesamd only one of which is true [8].
Evidence theory is based on two dual non additieasures, namely Belief measure and
Plausibility measure. There is one important fumcin Dempster-Shafer theory to define
Belief measure and plausible measure which is knasvBasic Probability Assignments.
A function m:2° _ [og] is called Basic Probability Assignments on the@ét it satisfies
the following conditions(j) m(g)= o0 (i) Zm(A)zlwhere ¢is an empty set and A is
AOO6
any subset dP.The Basic Probability Assignment function (or mdsaction) is a
primitive function. Given a frame@®, for each source of evidence, a mass function
assigns a mass to every subse€ofwhich represents the degree of belief that ortbef
hypotheses in the subset is true, given the safregidence. A subset A of a franf@is
called the focal elements afi, if m(A)>0. The lower bound, Belief for a set A is

defined as the sum of all the basic probabilitygassents of the proper subségjof the
set of interefA ) {(ie)B O A}. The upper bound, Plausibility is the sum of h# basic
probability assignments of set (B) that interséet set of interest (Af(ie)(B n A # ¢)}.
Formally for all sets A that are elements of thewgo sefa OP(x)),[Klir 1994
Bel(A) = zm(B)andm(A): Zm(B) The two measures, Belief and Plausibility are

B/BOA B/Bn Azg
non additive. This can be interpreted as not requifor the sum of all the Belief
measures to be one and similarly for the sum athallPlausibility measures. Hence the,
interval [Bel(A), PI(A)]is the range of belief A.

2.2. The Dempster rule of combination [4]
The Dempster rule of combination is critical to thrgginal conception of the Dempster-
Shafer theory. The measure of Belief and Plaugibdlre derived from the combined
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basic assignments. Dempster’'s rule combines malti@lief functions through their
basic probability assignments (m).These belief fions are defined on the same frame
of discernment, but are based on independent assigs or bodies of evidence. The
Dempster rule of combination is purely a conjuretbperation (AND). The combination
rule results in a belief function based on conjivect pooled evidence

[Shafer1986, pg132 .The combination (is called the jom,) can be calculated from

the aggregation of two Basic Probability assignment and m,in the following
manner:

> m (A)m,(B)
m(C) = 1A“B:° wheeC# ¢ ,m,(p)=0

- > m(A)m,(B)

AnB=¢
2.3. Random set theory (RST) [6,9]
2.3.1. Random set
Let (Q,A P)be a probability space@be a frame of discernment and its power set

denoted a®®, then, a random set X is defined by a set valuagpimg X : 2° - [0,1]

A densityf :2° _ [o1], (ie) f(A) =P{w0Q: X(w)=A,0ADO (1)

Such thatf (¢) =0and f(A) =0 ;andz m(A)=1 f determines a probability measite
AOO

the corresponding distribution functidn of the random seX is

F(A)=PlwdQ:X(w)O A =Y f(B),DATOG )

BOA
A random set can also be described by a set of pair

X = {(A, m(A))/DATD 0,m(A) = PlwdQ: X(w)= AL, Y. m(A) = 1} ®3)

AO©

2.3.2. Trapping function
A function T defined as follows is called a trapping function

T(A)=P{w0Q: X(w)n Az gdOAD® (4)

2.3.3. One-point covering function

A function Vx defined as follows is called a one- point coverfimgction of X for Non —
membership functior¥x (6)=Ple0Q:60X(a)}},0AT O (5)
It represents the relationship between any poif® iignd random set.

2.4. Intuitionistic fuzzy sets (IFS) [1]

An intuitionistic fuzzy sets (IFSAis E s defined as an object of the following form
A={(x 14 (x).vA(x))/ x D E}6)

where the functiong, : E - [01] @)
Vx ‘E- [0’1] (8)
Define the degree of membership and the degreenfmiembership of the element

xO E, respectively and for every( E :
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0=, (X)+ya(X)s1 9)(

Obviously, each ordinary fuzzy set may be written a

{0 40 ()1 2 (x))/ x O E} (10)
2.4.1. Uncertainty

The value ohA(x):l— ,uA(x) - yA(x) (11)

is called the degree of non determinacy (or untayfaof the element xE to the
intuitionistic fuzzy setA.

2.4.2. Non-member ship function
Let ©={6,,6,,6,,....... 0.} be a frame of discernment, an intuitionistic fusey,

denotedA 0 Ois defined by a Non-membership functipn: o - [01]
yx(6)0[oal 06 06 J12
A relationship between random set and intuitionifitizzy set has been proposed in [8],

intuitionistic fuzzy set can be represented by candget through the one point covering
function in equation (8) conversely, a random set e induced by intuitionistic fuzzy

setA[7] X (w)={8, 1 y;(6)20 (w)} (13)
Thus, X is a non consonant random set. It is easy to ualitteat (3)
vy (6)=Plw0a:6 0X;(w)=y;(6) (14)

In the following discussion, we give an examplehofv to represent fuzzy information
using theintuitionistic fuzzy set theory. Le®={4,,6,,6,........6,}be a set of objects,

and each of them can be described entirely by aobeattribute parameters, as

n
¢7:[x1,x2, ..... xk] (15)

It includes the objects lerh, temperature, surface area, etc. Let us considerthe
information about the parametefis vague and letR, be the range of this parame

(x, 0R,).R,can be discrete or continuous, ordered or not. IBUR be the
intuitionistic fuzzy set with a non - membershimétion . (x,).The intuitionistic fuzz
set B must be transformed into an intuitionistic fuzzyt s A @relatively to the
parametex; (2).
V;(@):Vé(xji) (16)

Wherexji is the j-th attribute value off .For example, the parameter, could
correspond to the length of the objects@rand the intuitionistic fuzzy seg 0 R, could
correspond to “small length” (the unit of lengthrreter). In this cas®; is continuous

and ordered. Each value from the interval frt{ﬁ;BOO] posses a Non-membership
degree of the intuitionistic fuzzy subset “smalhdéh” (see fig.1). By using equation

(10), we construct a new intuitionistic fuzzy sét[] O where Vi (Hi)represents the

degree of non — membership of each objecBito the intuitionistic fuzzy set” object
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with small length” (see Figure..

y- small length fx)
£ &
Y- "Objects with small length” (6)

= B R W ® &

50 100 150 200 250 300 81 -] 83 84 85 (3 87 88 89 810

X; €R;(m) object 6, €
Figure 1. Non-membership of the intuitionistic fuzzy set "smalhgth’

In fuzzy information fusion, focal elements are coomly according to the experience
knowledge of experts or common sense. Consonaat &ements are only flexible and
unpractical. Here we consider more general nonagmrgoforms of focal elements and
determines their BPA using by non-membership famcis a meaningful and challenging
problem. In this section, by merit of one-point edmg function of non-membership

function ,a non-consonant random set is construitie@present a set of general focal
elements given in advance, and then a linear goaupbe created to solve the BPA.
Firstly, the definition of one-point covering fuit for non-membership function

indicates. IfA 1 © g the only focal elements to whieh) belongs, then
v (6)=Plw0Q: X(w)=A,06 06

(17)
If AALAS,...... A.is a subset of parameter spaige k focal elements and
k
6,0A(j =123..k) y,(8)=> Plwone:x(w)=A}06 00 (18)
j=1
In particular, ifPlo0Q: X (w)= A }=Q then y, (4)=1 Secondly, le{Q, A P) be a
probability space, and let={u,,u,,u;........ u,} be a finite space, here

u =y;(6) (i =1223..n),we construct a random set X:Q - 2’and et
vy (u;)=y;(8,), according to equation (21), we have

L

V;(@)ZZP{WDQ3X(W):AJ}EQ 0e (19)
j=1

whereE, E, E,,....... E,0OU are u 0O Ej(j =123,...k) , then, a non-consonant

random sein:Q - 2°can be induced by the intuitionistic fuzzy $eaind random sef

x;(w):{gi /y;(‘gi)D X(w)} (20)

It is obvious thatn(A ) = PlwDQ: X(w) = A } = PlwDQ: X(w) = E, } (21)
H—- 2 »3 n — [S]

Where] =122°2°,..2 , Aj —{BI /y;(gl)D El} o2 and Ej ou ,Fina"y, equation (19)

can be written as equation (22) by the substitutifoagquation (21)

Y m(a)=y(6).06 00 (22)

=1
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Let ©={6,,6,,6,,.....6,} U ={u,u,, Uy} o Oy;(6),(=1.23,..0)

suppose there are ‘m’different possible focal eleter,E, E;,...... E.on, U and the
corresponding focal elementd , A, A,,....... A, 0 ©, then a linear equation group to
solve the BPA for the focal elements can be defiaedequation (23) according to

equation (22)AX = B 312

A A, A A % v:(6)
where |2 22 2 - . .. 2, % vi(6)| & D{O-J}isanon—membership

1 Qg B .. .. A, X3 yE 93)

A=| . . e e .o W X= L] ,B=
Ay Ay g . ... an X, v5(6,)
1,if HI O Aj

indicator &;j = 0, ifei DAJ-

Then, let us discuss the solution of equation (23)
0] Rank(A) = Rank (A,B): linear equation (23) has ntution.
(i) Rank(A) = Rank (A,B)=m: linear equation (23) hasurique solution. So,
X;, Xy,......X,can be decided uniquely.
o If X Xy X, 20aNAX +X, +.....#+ X =1are satisfied, them{a )=x (j=1,2,3..m

CIf X Xy X 2 0andx, + X, o + X, # 1then a normalization process is
. . m
needed in order to satis{'n{p) =1 (ie) m(Aj ): {xj / jzzlxj} L (1=1,2:3...m)(24)
AC2°

[f %05 Xppernnns X, = 0 is not fulfilled, then there is no reasonable BiBAthe
corresponding focal elements.
(iii) Rank(A) = Rank (A,B) < m : linear equation (23) bawfinitely many

solutions, suppose there are solutions suchXhd:---Xn 2 0.
We established an objective function to complegentiinimum total uncertainty of one
piece of evidence under some constraints, therpimal solution can be obtained by
solving an optimization problem (3) proposed a measf total uncertainty for

evidential reasoning. The proposed measure iscifunal, TU .,

TU PBH — Z m(A)Iogz(m(A)/W) (25)
A02°
Then, the objective function can be created aeval]
MinJ( X X )— - g] {x- / g]x- }Io X; | gx- /‘A-‘ (26)
Xl’ Dyeeeee m/)= j:1 i i:1| 92 ] i:ll J

Its constraints are equation (23) aD& X, X,,......X,, < 1the optimal solution denoted as

(Xl*’xz*’ ------ Xm*)Can be obtained by solving the above optimizatiosbiem, then by

normalization, we havem(Aj):{xj*/in*} , (i=1,2,3....m) (27)
i=1
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Let the frame of discernme®t={6,,6,,6,........ g,}, and its each elements non-

memberships shown in fig 2. The following three ragées illustrate how one applies
equation (23) for computing the BPA.

3. Numerical illustrations
Example 3.1. Suppose there are 7 possible focal elemmtéj =1,2,3..... 7)given by

Expert A, asE, ={005 08035, E, ={ 0807025, E, ={ 080207},

E, ={08015 07035 E,={0401 , E, ={ 0804025 E, ={ 0.4,0.7,025,035}
According to equation (20), we have

Al ={65'86'e7'88}’ A2 ={62'83'65}’ AS :{HS’HS}’A4 ={63’65’67'99},

A ={6,,6,.6,,} A ={6..6,.6.} A ={6,,6,,6,,6,} Then according to equation
(23), corresponding linear equations can be estaddli a®X = B (28)

0000111 04

where, 0000111 04y [o200 it o
0100011 N 025 0111001 (%) |or
0111001 . 07 0000100l %l |o
0000100 : 02 %, -
1111010 % 08 1111010/ ° |08
A%l1 000000 X7 B=1 005 1000000 |*]| [005
1001001 % 035 1001001/ || |o3s
1000000 %s 005 1000000/ || |oos
0001000 * 015 0001000 % 015
0000100 02 0000100 02

In this case, Rank(A) = Rank(A,B)=7=m I’inear edpral23) has an unique solution, the
unique solution isX =[005 005 035 015 02 005 015]' Then, we have
m(A )= 005, m(A,) = 005, m(A,)= 035 m(A,) = 015, m(A,) = 02, m(A,) = 005

m(A,) = 015,

Example 3.2. Suppose there are 7 possible focal elemerjmt@ =1,2,3.....7) given by
expert B, as

E, ={00507}, E, ={ 0803502}, E, ={ 0804} , E, ={ 080407025}

E. ={0802} , E, ={015 07,025 , E, ={ 07,035

According to equation (15), we have '

AI. ={03'96’08}’ AZ ={95’97’010}’ A3 ={91’95}'A4 ={01’02'93’95} , '% ={94’95},
A ={6,.6,.6,} A ={6,6]}

Then according to equation (23), correspondingplirggiuations can be established as
AX =B (29)
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0011000 04
Where 0001010 X 025
0011000 04

' 0001010 N 025 1001011 X o7
10010011 1 07 0000100 x5 02
0000100 2 02 0111100 || 08
alor11100 el 5| 08 1000000 4|7 0o5

= . =| X4 = X
R L e S S P B
1000000 Xg 005 1000000 %) 005
0000010 x7 015 0000010 015
0100000 02 0100000 02

In this case, Rank(A) = Rank(A,B)=7= m linear edprai23) has an unique solution, the
unique solution isX =[005 02 03 01 02 015 015]

Then, we have M(A,)=0.043 m(A,)=0.174 m(A,) = 0.261 m(A,) = 0.087,
m(A;)=0.174 m(A,) = 0.130 m(A, ) = 0.130,

Example 3.3. Suppose there are 8 possible focal eIemeqéj =1,2,3..... 8) given by
expert C, as

E, ={005 04039, E, ={ 080207}, E, ={ 02015 , E, ={ 08015,0.7}

E, ={ 0807} , E, ={025,035 , E, ={02502} E, ={ 0804,025,035
According to equation (23), we have ={6,,6,.6.,.6,}, A, ={6,.,6,,6.},

AS :{94’99}’ A4 ={83’05’09} , AS :{63’95} , A6 :{92’63’65’69}’ A7 :{91’010}'

A :{‘91’02’051‘97}-
Then according to equation (23), correspondingplirggiuations can be established as

AX =B (30)
10000011 04
10000011 04 00000101 X 025
where, 00000101 x 025 01011100] [X 07
01011100 X2 07 01100000 X3 02
01100000 "3 02 01011101| |x]|_|o08
A0 10110l X g 1081 1y 9000000 0| |x| |005
10000000 *5 005 Loooo0101| x| |03

10000101 Xg 035

10000000 *7 oos| [1 00000007 x4 005
00110000 *g 015 00110000 xg 015
0O00O0O0OO0OT1IO 02 000O0O0OT1IO0 02

Here, Rank(A) = Rank(A,B)=7< m linear equation (B8} infinitely many solution, then
the question of how to determine the solution i solution which will give the least
degrees of total uncertainty. Then according toaggn (21) and its constraints, the
optimization problem can be described as follows

8 8 8

Mind (X, X, ...... xs)z—Z{xj/in}logz{(xj/inJ/Aj}
j=1 i=1 i=1

(31)

such thatAX = B an@ < X, X,,......X; <1

The optimal solution is
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(%%, ., )=[005 02 0 015 025 01 02 01§

Then according to equation (26) we have,
m(A )= 0.045 m(A,)=0.182 m(A,) =0 m(A,)=0.136 m(A,) = 0.227,
m(A;) = 0091, m(A, ) = 0.182, m(A,) = 0.136

It is very easy to see that the final focal elerseaeA,, j =1,2,3...8.The Dempster's
combination rule and other combination rules in ERr€ory can be used for combination
after the intuitionistic fuzzy evidence is extratte

4. Conclusion

In this paper, a method is proposed to extractitiohistic fuzzy evidence with non
consonant focal elements based on random set thEeeyexamples summarized in this
work show the generality and efficiency of the mepd method.
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