Intern. J. Fuzzy Mathematical Archive Vol. 7, No. 1, 2015, 75-80 ISSN: 2320 –3242 (P), 2320 –3250 (online) Published on 22 January 2015 www.researchmathsci.org

International Journal of **Fuzzy Mathematical Archive**

BD–Domination in Graphs

M.Bhanumathi¹ and M.Kavitha²

¹Government Arts College for Women, Pudukkottai-622001, Tamil nadu, India e-mail: bhanu_ksp@yahoo.com Corresponding Author

² Government Arts College for Women, Pudukkottai-622001, Tamil nadu, India e-mail: kavisdev@gmail.com

Received 2 November 2014; accepted 4 December 2014

Abstract. A vertex v is a boundary vertex of u if $d(u, w) \le d(u, v)$ for all $w \in N(v)$. A vertex u have more than one boundary vertex at different distance levels. A vertex v is

called a boundary neighbour of u if v is a nearest boundary of u. A set $S \subseteq V(G)$ is a bd – dominating set such that every vertex in V-S has at least one neighbour and at least one boundary neighbour in S. The cardinality of the minimum bd - dominating set is called the bd - domination number and is denoted by $\gamma_{bd}(G)$.In this paper we present several bounds on the bd - domination number and exact values of particular graphs.

Keywords: Boundary vertex, boundary neighbour, bd - dominating set

AMS Mathematics Subject Classification (2010): 05C69, 05C12

1. Introduction and preliminaries

Let G be a finite, simple, undirected graph on n vertices with vertex set V(G) and edge set E(G). For graph theoretic terminology refer to Harary [5], Buckley and Harary [3].

Definition 1.1. The **open neighborhood** N(u) of a vertex v is the set of all vertices adjacent to v in G. $N[v] = N(v) \cup \{v\}$ is called the **closed neighborhood** of v.

Definition 1.2. A **bigraph or bipartite graph** G is a graph whose point set V can be partitioned into two subsets V_1 and V_2 such that every line of G joins V_1 with V_2 . If further G contains every line joining the points of V_1 to the points of V_2 then G is called a **complete bigraph**. If V_1 contains m points and V_2 contains n points then the complete bigraph G is denoted by $K_{m,n}$.

Definition 1.3. A star is a complete bi graph K_{1,n}.

Definition 1.4. [8] A set $D \subseteq V$ is said to be a **dominating set** in G, if every vertex in V–D is adjacent to some vertex in D. The cardinality of minimum dominating set is called the **domination number** and is denoted by $\gamma(G)$.

BD – Domination in Graphs

Definition 1.5. [6] A set $D \subseteq V(G)$ is an eccentric dominating set if D is a dominating set of G and for every $v \in V-D$, there exists at least one eccentric point of v in D. The cardinality of minimum eccentric dominating set is called the eccentric domination number and is denoted by $\gamma_{ecl}(G)$.

If D is an eccentric dominating set, then every superset $D'\supseteq D$ is also an eccentric dominating set. But $D''\subseteq D$ is not necessarily an eccentric dominating set.

An eccentric dominating set D is a **minimal eccentric dominating set** if no proper subset $D'' \subseteq D$ is an eccentric dominating set.

Definition 1.6. [4] A vertex v is a **boundary vertex** of u if $d(u, w) \le d(u, v)$ for all $w \in N(v)$. A vertex u have more than one boundary vertex at different distance levels.

A vertex v is called a **boundary neighbour** of u if v is a nearest boundary of u. The number of boundary neighbour of u is called the **boundary degree** of u.

In 2010, Janakiraman el al. have defined Eccentric domination in graphs. Motivated by this, here we have defined bd - domination number of a given graph and study that parameter.

Theorem 1.1. [6] $\gamma_{ed}(K_n) = 1$. Theorem 1.2. [6] $\gamma_{ed}(K_{m,n}) = 2$. Theorem 1.3. [6] $\gamma_{ed}(K_{1,n}) = 2, n \ge 2$. Theorem 1.4. [6] $\gamma_{ed}(P_n) = \begin{cases} \left[\frac{n}{3}\right], & if \ n = 3k + 1 \\ \left[\frac{n}{3}\right] + 1, & if \ n = 3k \ or \ 3k + 2. \end{cases}$ Theorem 1.5. [6] $\gamma_{ed}(W_3) = 1, \gamma_{ed}(W_4) = 2, \gamma_{ed}(W_n) = 3 \ for \ n \ge 7.$ Theorem 1.6. [6] (i) $\gamma_{ed}(C_n) = n/2$ if n is even. $\begin{cases} n \ if \ n = 2m \ m \ div = dd \end{cases}$

(ii)
$$\gamma_{ed}(C_n) = \begin{cases} \frac{n}{3} \text{ if } n = 3m \text{ and is odd} \\ \left\lceil \frac{n}{3} \right\rceil \text{ if } n = 3m + 1 \text{ and is odd} \\ \left\lceil \frac{n}{3} \right\rceil + 1 \text{ if } n = 3m + 2 \text{ and is odd} \end{cases}$$

2. BD – Domination

Definition 2.1. A set $S \subseteq V(G)$ is a **bd** – **dominating set** such that every vertex in V-S has at least one neighbour and at least one boundary neighbour in S. The cardinality of the minimum bd - dominating set is called the **bd** - **domination number** and is denoted by $\gamma_{bd}(G)$.

Let $S \subseteq V(G)$. Then S is known as a **boundary neighbour set** of G if for every vertex $v \in V - S$, S has at least one vertex u such that $u \in E(v)$.

A boundary neighbour set S of G is a **minimal boundary neighbour set** if no proper subset S' of S is a boundary neighbour set of G.

M. Kavitha and M. Bhanumathi

We define S is a **minimum boundary neighbour set** if S is a boundary neighbour set with minimum cardinality and $\mathbf{b}(\mathbf{G})$ be the cardinality of a minimum boundary neighbour set of G and $\mathbf{b}(\mathbf{G})$ can be called as boundary number of G.

Let D be a minimum dominating set of a graph G and S be a minimum boundary neighbour set of G.

Clearly, $D \cup S$ is a bd-dominating set of a graph G. Hence, $\gamma_{bd}(G) \leq \gamma(G) + b(G)$.

Example 2.1.

 $\begin{array}{l} D_1 = \{1, 4, 5, 6, 7, 15, 16, 17\} \text{ is a minimum dominating set. } \gamma(G) = 8. \\ D_2 = \{1, 4, 5, 6, 7, 8, 10, 15, 16, 17\} \text{ is a minimum bd} - \text{dominating set. } \gamma_{bd}(G) = 10. \\ D_3 = \{1, 4, 5, 6, 7, 15, 16, 17\} \text{ is a minimum eccentric dominating set. } \gamma_{ed}(G) = 8. \end{array}$

Theorem 2.1.

(i)
$$\gamma_{bd}(K_n) = \gamma_{ed}(K_n)$$

(ii)
$$\gamma_{bd}(K_{1,n}) = \gamma_{ed}(K_{1,n}), n \ge 2$$

(iii)
$$\gamma_{bd}(K_{m,n}) = \gamma_{ed}(K_{m,n})$$

(iv)
$$\gamma_{bd}(C_n) = \gamma_{ed}(C_n)$$

(v) $\gamma_{bd}(W_n) = \gamma_{ed}(W_n)$

Proof: In these particular graphs, the boundary neighbours are the eccentric vertices. Therefore, eccentric dominating set is equal to the boundary dominating set. Hence, we get the above results.

Theorem 2.2. $\gamma_{bd}(P_n) = \gamma_{ed}(P_n) = \gamma(P_n)$ or $\gamma(P_n) + 1$.

Proof: The bd – dominating set of P_n must contain two end vertices. Therefore, bd – dominating set is also the eccentric dominating set. Hence, $\gamma_{bd}(P_n) = \gamma_{ed}(P_n) = \gamma(P_n)$ or $\gamma(P_n) + 1$.

Note. For a graph $G = K_n + K_1 + K_n$, $n, m \ge 2$, $\gamma_{bd}(G) = 2$.

Theorem 2.3. A bd – dominating set D is a minimal bd – dominating set if and only if for each vertex $u \in D$, one of the following is true.

(i) u is an isolated vertex of D or u has no boundary vertex in D.

(ii) There exists some $v \in V$ -D such that $N(v) \cap D = \{u\}$ or $b(v) \cap D = \{u\}$. Where b(v) is the boundary neighbour set of v.

BD – Domination in Graphs

Proof: Assume that D is a minimal dominating set of. Then for every vertex $u \in D,D-\{u\}$ is not a bd – dominating set. That is there exists some vertex v in $(V-D) \cup \{u\}$ which is not dominated by any vertex in $D - \{u\}$ or there exists v in $(V-D) \cup \{u\}$ such that v has no boundary neighbour in D- $\{u\}$.

Case (i) Suppose u = v, then u is an isolate of D or u has no boundary neighbour in D. **Case (ii)** Suppose $v \in V$ -D

- (a) If v is not dominated by D-{u}, but is dominated by D, then v is adjacent to only u in D, that is $N(v) \cap D = \{u\}$.
- (b) Suppose v has no boundary neighbour in $D \{u\}$ but v has a boundary neighbour in D. Then u is the only boundary neighbour of v in D. That is $b(v) \cap D = \{u\}$.

Conversely, suppose that D is bd - dominating set and for each $u \in D$ one of the conditions holds, we show that D is a minimal bd - dominating set.

Suppose that D is not a minimal bd – dominating set, (ie) there exists a vertex $u \in D$ such that $D - \{u\}$ is a bd – dominating set. Hence u is adjacent to at least one vertex v in $D - \{u\}$ and u has a boundary neighbour in $D - \{u\}$.

Therefore, condition (i) does not hold.

Also, if $D - \{u\}$ is a bd – dominating set, every element x in V – D is adjacent to at least one vertex in $D - \{u\}$ and x has a boundary neighbour in $D - \{u\}$.

Hence, condition (ii) does not hold. This is a contradiction to our assumption that for each $u \in D$, one of the conditions holds.

This proves the theorem.

Observation: 2.1. (i) The pendent vertices are the boundary neighbours of their support vertices.

(ii) Eccentric vertices are also boundary vertices.

Theorem 2.4. Let T be a tree of order n with n_1 pendent vertices. Then $\gamma_{bd}(T) \leq \gamma(T) + n_1$. **Proof:** Let T be a tree of order n.

Case (i) Assume D be a dominating set of T. If D contains all the pendent vertices of T, then D becomes a bd – dominating set. Hence $\gamma_{bd}(T) = \gamma(T)$.

Case (ii) a

If D does not contain the pendent vertices, then we add the boundary neighbours with D. Then we have $\gamma_{bd}(T) < \gamma(T) + n_1$.

Case (ii) b

All the pendent vertices are the boundary neighbours of T then $\gamma_{bd}(T) < \gamma(T) + n_1$. Since the support vertices of the pendant vertices can be removed from D and the pendant vertices can be added. Hence, $\gamma_{bd}(T) < \gamma(T) + n_1$.

Theorem 2.5. If G is a connected graph with n vertices then $\gamma_{bd}(G) \leq \lfloor 2n/3 \rfloor$. **Proof:** If D is a minimum bd – dominating set, then for $v \in V$ -D there exists $u \in D$ and $w \in D$ such that u is adjacent to v in G and w is boundary dominate a vertex v in G. Hence D contains at most 2n/3 vertices. Hence $\gamma_{bd}(G) \leq \lfloor 2n/3 \rfloor$.

M. Kavitha and M. Bhanumathi

Theorem 2.6. If G is a caterpillar such that each non pendent vertices is of degree three then $\gamma_{bd}(G) = (n/2) + 1$.

Proof: Since degree of each non pendent vertex is three, then G is of the following form.

Pendent vertex set form a bd – dominating set S and it is also a minimum set. Then every vertex v in V-S has a adjacent vertex in S and adjacent pendent vertex is a boundary neighbour of v. Hence $\gamma_{bd}(G) = (n/2) + 1$.

Theorem 2.7. If G is a spider then $\gamma_{bd}(G) = \Delta(G) + 1 = N(u) + 1 = n - \Delta(G)$.

Proof: Let G be a spider, and u be a vertex of maximum degree $\Delta(G)$. N(u) vertices form a dominating set. Adding any one end vertex form a bd - dominating set. Hence $\gamma_{bd}(G) = |N(u)| + 1$. That is, $\gamma_{bd}(G) = \Delta(G) + 1 = n - \Delta(G)$.

Theorem 2.8. If G is a wounded spider then $\gamma_{bd}(G) \leq \Delta(G)$. **Proof:** Let G be a wounded spider. Let u be the vertex of maximum degree $\Delta(G)$.

Case (i) If G has one or two wounded legs.

N(u) vertices form a bd – dominating set, since the end vertex of the wounded leg is a boundary neighbour of the other vertices. Hence $\gamma_{bd}(G) = \Delta(G)$.

Case (ii) If G has more than two wounded leg.

The end vertices of the non wounded legs and the central vertex u form a dominating set of G. Adding any one end vertex of the wounded leg form a bd - dominating set. Hence $\gamma_{bd}(G) \leq \Delta(G)$.

REFERENCES

- 1. M.Bhanumathi and S.Muthammai, Further results on eccentric domination in graphs, international journal of engineering science, *Advanced Computing and Bio-Technology*, 3(4) (2012) 185-190.
- 2. M.Bhanumathi and S.Muthammai, On eccentric domination in trees, *International Journal of Engineering Science*, 2(1) (2011) 38-46.
- 3. F.Buckley and F.Harary, Distance in graphs, Addison–Wesley, Publishing Company (1990).
- 4. Gary Chartrand and Ping zhang, Introduction to Graph Theory, Tata McGraw Hill Publishing Company Limited, New Delhi, 2006.
- 5. F.Harary, Graph theory, Addition Wesley Publishing Company Reading, Mass 1972.
- T.N.Janakiraman, M.Bhanumathi and S.Muthammai, Eccentric domination in graphs, International Journal of Engineering Science, Computing and Bio-Technology, 1(2) (2010) 16.

BD – Domination in Graphs

- 7. R.Begam, M.Palanivelrajan, K.Gunasekaran and A.R.Shahul Hameed, Graceful labeling of some theta related graphs, *International Journal of Fuzzy Mathematical Archive*, 2 (2013) 78-84.
- 8. V.R.Kulli, Theory of domination in graphs, Vishwa International Publications.