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Abstract. In this article we considered a single period intgen system in which a
specific item is maintained at service facilitystapply unit item to customers with fuzzy
service rate. Demand for item is assumed to beyfuZustomers arrived during the
service time of a previous customer has to wai gueue. For different fuzzy total cost
obtained from different order quantity, a methodrénking fuzzy numbers is adopted to
find the optimal order quantity in terms of costa@ing the fuzzy cost, with the policy
that when the profit gained from selling one itesridss (greater) than the loss incurred
due to one unsold item, the optimal order quatigty in the interval defined for the left
(right) shape function of the fuzzy demand as wsllthe fuzzy service time also. We
used this methodology to our inventory cost modget optimal order quantity.
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1. Introduction

Single period inventory system is a simple but nso#table for seasonal items sold in the
festival seasons [1-5]. It is also a frequentlycd&sed model in the literature. A single
procurement is made to satisfy the customers what wapurchase them with almost
care during that season. The customers accepteims ionly after an uncertain service
time leads to fuzzy service rate. Stocking of sjems, perishable items, style goods and
special season items are practical examples ofithigel. The traditional names for these
kinds of problems are Christmas Tree Problems evd\#oy Problem. The problem here
is that how many Christmas trees or Newspaperdearocured to get maximum profit
for a particular season. The major difficultly fddey the decision maker, in this kind of
problem is to forecast the demand. As the procun¢rdecision highly depends on the
demand behavior of customers. This demand may berfib items or multiple items.
Another difficulty faced by the vendor is that keems become obsolete at the end of the
period. Exiting models (most of them) assume thebabilistic demand [17-20] and
marked them as stochastic models [8-15]. The naifithe probability distribution is
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estimated form historical data. In most the casisoffical data is not adequately
available to predict the exact distribution. Bug¢ themand for the single period seasonal
items can be suitably described by linguistic tersagh as ‘high’ or ‘low’ of are
approximately estimated with certain amount by gpeet (subjective estimation). The
above descriptions lead us to confirm that the delmare fuzzy. Fuzzy sets and system
is an ever growing subject matter, where we cad fin many solution procedures to
solve such a problem. Many research papers havephd#ished in this field of research.
The purpose of study is to find the optimal quantif for a single period inventory
system in the service facility with fuzzy demandeTcriteria used to find the optimal
order quantity.c * is minimization of total cost T(Q). The approach agopted is to find
the quantity which has minimum cost is the methbEuzzy ranking.

2. Model description
» Single period inventory in a service facility systewhere inventory is
maintained to satisfy a customer after a fuzzyisertime.
» The demand is fuzzy number.
» The service time is also fuzzy interval (fuzzy $esvrate).
» The lead time for replenishment constant(tgtérom a remote source.
Consider a single period inventory problem. The aednis assumed to be normal fuzzy

numbeM~ , defined by the membership function

~ {Ll(x), h< x<s;
Ha(x) =11, SIS
R(Y, =Xy,

Again the service rate is to be a normal fuzzy rmlrjzb described by a general
membership function

~ L), I, =syss,
Hy(y) =11, S; < yst
RY) bt <sysu,

whereL, (x), L,(x), R (y) and R, (y) are left and right—shape functions respectivel)} ahd
V.
The problem is to find the best order quantityemts of the cost incurred. Suppose a

guantity Q is ordered. The total casb) can be described as

T(Q)=cQ+ p max (0,)~| -Q) +h max (0,Q-/~] > +w max <O,/~] -T/)

where c is the unit cost for purchasing each ifEne cost p (p>c) is the penalty cost per
unit, the case where p<c is nonsensical becausplies that cost of purchasing the item
is higher than the penalty for not providing it.tLle be the holding cost per unit
remaining at end of period. Let w be the waitingtdor a customer waiting in queue per
unit time. Let x be the demand rate and y be tieicgerate. In a traditional inventory
system the inventory depletes at the rate of demsagdk, but in service facility system
inventory depletes at the rate of service complesiay v.
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_1cQ+hQ-x) I=£xQ.

Tx1Q= {CQ+ (PW)(x-Q) Q=X u

Here| = max(ly, I,), s=max (§ ), t = min (t, t;),u = min (u,u,).
Case(i) Case(ii) Case(iii)

A

1.0

R, (Q)

@] Ilsltl L3]

Figure 1: The membership function o}
Case(i):I<Q<s

cQ+h(Q-L71@). cor fr71e ¥ §+ w(x Q] &z L@
T(a) = . i
cQ+(pL1@)- QP+ wi-Q). cQ+ fr71¢ ¥ ¢+ w(x Q) L(Qjas !

Case(ii): s<Q<t

T(@) = {[CQ”(QLfl(G ). cor grter ¢ wix Q] eas
Cape ( Case (i) Case (iii)

A

v

0 | 2 5 i} W

Figure 2: The membership function q}
Case (iii):t<Q<u
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@+ Q-L7l@), cQr gR71¢ ¥ ¢+ wix Q)  Bas R(@

1 feonfierte). o forwte]] mess

3. Analysis

We considered the total cogk) which is a fuzzy number. The value of this funetaan
be ranked (ordered) in such a way that one cathgebptimal value of Q, for minimal

T@) -

Even though lots of ranking methods are availableffizzy numbers in the
literature, we prefer the method due to Yager [dHcause of its less dependence on
membership functions. The area measure of the nmsipgunctions leads to the Yager

ranking index which is defined asn :% {'L(;)”R(;)} WhereL(?) represent the area

bounded by the left — shape functionte), co-ordinate axes and the horizontal line

=1 similar argument holds for right shape functidnr@) namelle(T).

Optimization 3.1. In order to get optimal , we have considered the following three
EZSSZ?;): l<Q< S,here | = max (ll;s=max ($%)

|(f):Lf)o.5[CQ+ h(Q- *@)+cQ+ { R@)- @ W x qg] d+

j)o.s[cm (L' @)-Q+wx Q+ CQ f R@)- @ v x })] al

L@

1 L(Q
= CQ+3 (h - PILQ ~ pQ(L ~ L@) + 5 [ R @da—3 [ 17 @do
0 0

1

+gf L™ (a)do + w(x — Q) [1 —%Q)]

0

The first derivative ofi (T)we havea;g) =(c—- p)+0.5(p+ h)L(Q)

~ 2 r
The second derivate df(T ) we haveaalQ(I) =0.5(p+h)L'(Q)

Q = L'l(%] for(p—-9<(c+ h.

Case(ii): s< Q<t

I('I:)=Jl.0.5[CQ+ h(Q-'@)+04 cQr { R @) Q[+ wx Q} d
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=¢-0.5(p- h)-— jL @) + pj R(@)dr- VEX Q
{$ (p- ©<(C+|)

QOi[sq (p-9=(cr b
{tt  (p-9>(cth

Case (iii):t<Q<u

1) = | 0.5[CQ+ h(Q- @)+ 0.5 cQ+ o R @)- Q)]+ w(x Q} d+

;_/

j {O.S[CQ+ h(Q- L*@)+ 0.8 co+ o R @) Q)|+ w(x Q]
R(Q)
1

-0+ Q- prO* - RO ¢ o)+ | R e)a-"[ ReyarY(x ORE
2 24 24 2. 2

©
The first and second derivativeslqf) we have

"'ag’-<c+h> 0.5(p+ HRQ): ""(” ~0.5(p+ h)R(Q)

. a1 2(c+h) _
Q =R [(p+h)]for(p 9=(c+t B

Combining for three cases,

L‘{z(p“’) (P-9=<(c+h

(p+h |
Q ={0[s 1, (p-9=(c+ h

[ 2e+h]
W[(p+h)_,(rr02(0+h)

Discussion 3.2. In this case of stochastic inventory models. Thaaled is described by a
distributions functions F(x) of the random variak]avith density f(x).

In order to minimize the expected total cost theénog@l quantity to order is’, given the

equation
* _ 1 (p—C)
P QFF [(p+h)j

One of the membershlp function widely used in aggpions in the trapezoidal function
of the following form

L(x) = EX-:; L<x<s
H;(X)orp,(x) =11 s< x< t
R(x):(u_x) t< x<u

(u-v
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Here , I=max (ll,), s = max (§%),t = min (t,t),u = min (Y, W)

The & - cut of this fuzzy number ig(a) or y(a)=[ L™(a),R (@) ]

=[l+a(s-1), u-a(u-t).

o (200-9)

_|+[(p+h) (s=1),(p- ©)< (c+ h)
Q =40[st, (p-9=(ct h

:u—[fg’::)’_(u—t). (- ) (c+ h)
4. Conclusion

The single-period inventory system with servicellitycproblem deals with finding the
product’s order quantity which minimizes the expeéctcost of seller with random
demand. However, in real world, sometimes the gritiba distribution of the demand
for products is difficult to acquire due to lack ioformation and historical data. This
study focuses on possibility situations, wheredbmand and service rate are described
by a membership functions and uncertain service toauses an uncertain total cost
function. This paper proposes an analytical metiboobtain the exact expected value of
total cost function which is composed of inventboiding, inventory shortage and unit
production costs for a single-period inventory peof under uncertainty. To determine
the optimum order quantity that minimizes the futatal cost function, the expected
value of a fuzzy function based on the credibitigory is employed. By this method,
closed-form solutions to the optimum order quagditind corresponding total cost values
are derived. The advantages of the closed-formtisaki obtained are those: they
eliminate the need for enumeration over alternati@kies and give the opportunity to
analyze the effects of model parameters on optiroumher quantity and optimum cost
value. The proposed methodology, used for optinunabased on the credibility theory
can be applied to the solution of other complexl ngarld problems where this
complexity arises from uncertainty in the form aflg@guity. The single-period inventory
system with service facility model analyzed in thaper considers only a single type of
product. The model can be extended to a multi-pbdase and the solution procedure
can be extended as a further research of this stidgther issue of interest is the
examination of the proposed model with impreciseeimory cost coefficients. The
analysis of single-period inventory problem witthet sources of uncertainty besides
imprecise demand is another area of further rekearc
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