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1. Introduction  
In abstract algebra, mathematical system with one binary operation called group and two 
binary operations called rings were investigated. In 1966, Imai and Iseki [3] defined a 
class of algebra called BCK-algebra. A BCK– algebra is named after the combinators B, 
C and K by Carew Arthur Merideth, an Irish logician. At the same time, Iseki [4] 
introduced another class of algebra called BCI- algebra, which is a generalization of the 
class of BCK- algebra and investigated its properties.  For the general development of 
BCI/BCK –algebras, the ideal theory and graph plays an important role. In 2006, Kyung 
Ho Kim [7] introduced  a new class of algebraic structure called KS-semigroup, which 
also deals with a new class algebras related to BCK-algebra, called a commutative KS-
semigroup. In this paper, we introduce the concept of a annihilator graph on AG(X) a 
commutative KS-semigroup and discussed its properties. 
 
2. Preliminaries 
Definition 2.1. [11] A BCK-algebra is a triple (X,∗,0) where X is a non empty set, “∗” is 
a binary operation on X and  0∈X is an element such that the following axioms are 
satisfied. 

i. x∗0 = x  for all x ∈X. 
ii. (x∗y)∗z  = (x ∗z)∗y  for all x, y, z ∈ X. 
iii.  x≤ y ⇒ x ∗ z  ≤ y ∗ z and z ∗ y  ≤ z ∗x  for all x, y, z ∈ X. 
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iv. (x ∗z) ∗( y∗z ) ≤ x ∗y  for all x, y, z ∈ X. 
If X is a BCK-algebra, then the relation x ≤ y iff  x∗ y =0 is a partial order on X, which is 
called the natural ordering on X.  
Example 2.2. [6] Let X = {0,a,b,c} be a set with ∗-operation given by Table, 

 
 
  
  
 
 
Then (X,∗,0)  is a BCK-algebra. 
 

3. Commutative KS-semigroup 
Definition: 3.1. [9] A semigroup is an ordered pair (S,∗), where S is a nonempty set and 
“∗” is an associative binary operation on S. 
 
Definition 3.2. [9] A commutative KS-semigroup is a non –empty set X with two binary 
operations “∗” and “•” and constant 0 satisfying the axioms; 

i. (X,∗,0) is BCK-algebra. 
ii. (X,•) is semigroup.  

iii.  x • (y∗z) = (x • y)∗ (x • z) and  (x∗y) • z = (x • z)∗(y • z) ∀x,y,z∈X. 
iv. x∗(x∗y) = y∗(y∗x) ∀x,y∈X. 

 
Example 3.1. [9] Let X= {0,a,b,c} be a set with the ‘∗’ and  ‘•’ operations  given by 
Table, 
 
 
 
 

  
 

 
 Clearly, (X,∗, • , 0) is  a commutative KS-semigroup. 
 
Definition 3.3. Let (X,∗1,•1,0)  and (Y,∗2,•2,0) be any two Commutative KS-semigroups 
such that X∩Y={0}. Define the binary operations “∗” and “•” on X∪Y by 
 x∗1y   if x,y ∈ X 

 x∗y  =   x∗2y   if x,y ∈ Y 
  x        otherwise 

               x•1y   if x,y ∈ X 
 x•y  =   x•2y   if x,y ∈ Y 
  0        otherwise 

∗∗∗∗ 0 a b c 
0 0 0 0 0 
a a 0 a a 
b b b 0 b 
c c c c 0 

 ∗ ∗ ∗ ∗ 0 a b c 
0 0 0 0 0 
a a 0 a 0 
b b b 0 0 
c c  b a 0 

• 0 a b c 
0 0 0 0 0 
a 0 a 0 a 
b 0 0 b b 
c 0 a b c 
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Theorem 3.1. Let (X,∗1,•1,0) and (Y,∗2,•2,0) be a Commutative KS-semigroups such that 
X∩Y={0} and “∗” and “•” be the binary operation on X∪Y defined as follows, for any 
x,y  ∈ X∪Y, 

 x∗1y   if x,y  ∈ X 
 x∗y  = x∗2y   if x,y  ∈ Y 

  x        otherwise 
 x•1y   if x,y  ∈ X 

 x•y  =   x•2y   if x,y  ∈ Y 
  0        otherwise 
Then, (X∪Y,∗, •) is a Commutative KS-semigroup. 

Proof:  i. (X,∗1, •1,0) is a BCK-algebra and (Y,∗2, •2,0) is a BCK-algebra. 
 ii. (X,•1) and (Y,•2) are a semigroup. 
 iii. The operation • is left and right distributive over the operation ∗ 
  (i.e)  (a)x•(y ∗ z) = (x • y)∗(x • z) and (x ∗ y)• z = (x • z)∗(y • z)∀x,y,z  ∈ X . 
  (b)x•(y ∗ z) = (x • y)∗(x • z) and (x ∗ y)• z = (x • z)∗(y • z)∀x,y,z  ∈ Y. 

 iv. x∗(x ∗ y) = y ∗(y ∗ x)∀x,y  ∈ X. 
For any x,y  ∈ X∪Y, Define the ∗ and • operations on X∪Y as follows, 
   x∗1y   if x,y  ∈ X 

 x∗y  =   x∗2y   if x,y  ∈ Y 
  x        otherwise 
  x•1y   if x,y  ∈ X 
 x•y  =   x•2y   if x,y  ∈ Y 
  0        otherwise 

To prove that,  
 i. (X∪Y,∗,0) is a BCK-algebra. 
  (a) For any x  ∈ X, x∗0 =x.For any y  ∈ Y, y∗0 =y. 
  (b) x∗y = 0 ⇒ either x,y ∈ X or x,y  ∈ Y. so, x∗y = 0 ⇒ (z∗y)∗(z∗x) = 0 
  (c) For any x  ∈ X,y  ∈ Y, 
   Case: (i) Let z  ∈ X 
   (x∗y)∗z = (x∗z)∗y 
   (x∗y)∗z = x∗z 
   (x∗z)∗y = x∗z 
   Case: (ii) Let z ∈ Y 
   (x∗y)∗z = (x∗z)∗y 
   (x∗y)∗z = x∗z = x 
   (x∗z)∗y = x∗y = x 
 (d) For any x  ∈ X,y  ∈ Y, 
   Case: (i) Let z  ∈ X 
   ((x∗y)∗(y∗z))∗(x∗y) = 0 
   ((x∗z) ∗ (y∗z)) ∗ (x∗y) = ((x∗z) ∗y) ∗x = (x∗z) ∗x = 0 
   Case: (ii) Let z  ∈ Y 
   ((x∗z) ∗ (y∗z)) ∗ (x∗y) = (x∗ (y∗z)) ∗x = x∗x = 0 
Hence, (X∪Y,∗,0) is a BCK-algebra. 
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 ii. (X∪Y, •) is a semigroup.If ∀x,y ∈ X or x,y ∈ Y, then (X∪Y, •) is a 
semigroup. Let x ∈ X and y ∈ Y, then x•y=0 ∈ X∪Y. 
  Also, x•(y•z) = (x•y)•z = 0 ∀ z  ∈ X or Z  ∈ Y. 
  ∴ (X∪Y, •) is a semigroup. 
 iii. The operation • is left and right distributive over the operation “∗”. 
  For all x,y,z ∈ X or x,y,z ∈ Y, 
   x•(y∗z) = (x•y)∗(x•z) and (x∗y)•z = (x•z)∗(y•z)∀ x  ∈ X and y,z∈Y. 
 Case: (i) 
  For any x ∈ X, y ∈ Y, 
 (a) Let z  ∈ X 
  x •(y ∗ z) = x • y = 0 
  (x•y) ∗ (x•z) = 0∗ (x • z) = 0 
  ∴x •(y ∗ z) = (x • y)∗(x • z) 
 (b) (x∗y) •z = x•z 
  (x• z) ∗ (y•z) = (x • z)∗  0 = x • z 
  ∴(x ∗y) • z = (x • z)∗(y • z) 
 Case: (ii) 
  For any x ∈ X, y ∈ Y, 
 (a) Let z  ∈ Y 
  x •(y ∗ z) = x • y = 0 
  (x•y) ∗ (x•z) = 0 
  ∴x •(y ∗ z) = (x • y)∗(x • z) 
 (b) (x∗y) •z = x•z = 0 
  (x•z) ∗ (y•z) = 0 ∗ (y•z) = 0  
  ∴(x∗y) •z = (x•z) ∗ (y•z) 

iv. x∗ (x∗y) = y∗ (y∗x) ∀x,y ∈ X, 
x∗(x ∗ y) = y ∗(y ∗ x)∀x,y ∈ Y,For any x ∈ X and y ∈ Y, 
x∗(x ∗ y) = x ∗x= 0; y ∗(y ∗ x) = y ∗y= 0. 

Hence, (X∪Y,∗,•, 0) is a Commutative KS-semigroup. 

Example 3.2. Let X={0,a,b,c} and Y={0,1,2,3}. Define two operations ∗1and  •1on  
Xand∗2and •2 on Y as follows. 
 
 
 
 
 
 
Clearly, (X, ∗1, •1, 0) is a Commutative KS-semigroup. 
 

 
 
  
 
  

•1 0 a b c 

0 0 0 0 0 
a 0 a 0 0 
b 0 0 b 0 
c 0 c 0 0 

∗∗∗∗1 0 a b c 
0 0 0 0 0 
 a a 0 a a 
b b b 0 b 
c c  c c 0 

∗∗∗∗2 0 1 2 3 
0 0 0 0 0 
 1 1 0 1 0 
2 2 2 0 0 
3 3 2 1 0 

•2 0 1 2 3 
0 0 0 0 0 
1 0 1 0 1 
2 0 0 2 2 
3 0 1 2 3 
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Clearly, (Y, ∗2, •2, 0) is a Commutative KS-semigroup. 
Let X∪Y = {0,a,b,c,1,2,3}. Define the two operations ∗ and  • on X∪Y as follows,  

 
 
 
 
  
 
 

 

 Hence, (X∪Y, ∗, •, 0) is a Commutative KS-semigroup. 
 
Definition 3.4. For any x,y  ∈ X, X is a Commutative KS-semigroup, denote 
x∧y=y∗(y∗x). Obviously, x∧y is a lower bound of x and y and x∧ x=x,  x∧ 0=0∧ x=0. 
 
Definition 3.5. Let (X,∗, •, 0) be a Commutative KS-semigroup. For any a  ∈ X, 
 Define ann(a) = {x  ∈ X/x∧ a= 0, a  ∈ X} is called the annihilator of a. 
 
Example 3.3. Let X={0,a,b,c} be a set with the  ∗  and • operations given by Table, 

 
 
 
 
  
 

ann(a) = { x∈X/x∧a=0,a∈X} 
ann(0) = {0,a,b,c}; ann(a) = {0,b}; ann(b) = {0,a};ann(c) = {0}. 
 
Definition 3.6. Let (X,∗, •, 0) be a commutative KS-semigroup,  
Define, Z(X)={a ∈ X /a.b = 0 for some 0 ≠ b ∈ X} as the set of all zero divisors in X.  
 

Remark 3.1. Note that ann(x) ⊆ X and Z(X) = 
∪

0 ≠ x
 ann (x). 

 
Definition 3.7. Let (X,∗, •, 0) be a commutative KS-semigroup, then the annihilator 
graph denoted as AG(X) is defined as, the graph with vertex set  Z∗(X) = Z(X) – {0} and 
an edge set {xy/ x ≠ y, x,y ∈ Z*(X), ann(x)∪ann(y) ≠ ann(xy)}.  
 
Theorem 3.2. Let (X,∗1, •1,0) and (Y,∗2, •2,0) be any two commutative KS-Semigroup 
and   Z(X) and Z(Y) be the set of all zero divisors of  X and Y respectively, If Z*(X) = X–
{0} and Z*(Y) =Y– {0}. Then AG(X)∪ AG(Y)=  AG(X∪Y) . 
Proof: We have to prove that AG(X∪Y) = AG(X) ∪ AG(Y). 
      Let,Ζ∗(X) = X-{0} and Ζ∗(Y) = Y-{0} then Ζ∗(X∪Y) = X∪Y-{0} 
 ∴V(AG(X∪Y)) = V(AG(X)) ∪ V(AG(Y)). 

∗∗∗∗ 0 a b c 1 2 3 
0 0 0 0 0 0 0 0 
a a 0 a a a a a 
b b b 0 b b b b 
c c c c 0 c c c 
1 1 1 1 1 0 1 0 
2 2 2 2 2 2 0 0 
3 3 3 3 3 2 1 0 

• 0 a b c 1 2 3 
0 0 0 0 0 0 0 0 
a 0 a 0 0 0 0 0 
b 0 0 b 0 0 0 0 
c 0 c 0 0 0 0 0 
1 0 0 0 0 1 0 1 
2 0 0 0 0 0 2 2 
3 0 0 0 0 1 2 3 

• 0 a b c 
0 0 0 0 0 
a 0 a 0 a 
b 0 0 b b 
c 0 a b c 

∗∗∗∗ 0 a b c 
0 0 0 0 0 
a a 0 a 0 
b b b 0 0 
c c b a 0 
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To prove:  E(AG(X∪Y)) = E(AG(X)) ∪ E(AG(Y)). 
First let us prove that there does not exist any edge xy∈E(AG(X∪Y) such that  
x∈ V(AG(X)) and y ∈ V(AG(Y)). Suppose if possible let xy∈E(AG(X∪Y) such that 
x∈ V(AG(X)) and y∈V(AG(Y)).In (X∪ Y), ∗,•,0), we have , ann(x) = Y ∪ ann(x) in X 
and  ann(y) = X ∪ ann(y) in Y. 
ann(x)∪ann(y) = (Y ∪ ann(x) in X) ∪ (X ∪ ann(y) in Y)= X ∪ Y = ann(0) in X ∪ Y. 
ann(x) ∪ann(y) = ann(xy) in X ∪ Y. but xy∈ E(AG(X∪Y), which is a contradiction.  
Hence, that there does not exist any edge xy∈E(AG(X∪Y) such that x ∈ V(AG(X)) and       
y ∈ V(AG(Y)). 
Now, let xy ∈ E(AG(X)) and hence, ann(x) ∪ann(y)  ≠ ann(xy) in X. 
In X ∪ Y,ann(x) = Y ∪ {ann(x) / x ∈ X} 
 ann(y) = Y ∪ {ann(y) / y ∈ X} 
 ann(xy) = Y ∪ {ann(xy) / x.y∈ X} 
ann(x) ∪ann(y)  = Y ∪ {ann(x) ∪ann(y) / x.y∈ X} 
ann(x) ∪ann(y)  ≠ Y ∪ {ann(xy) / x.y∈ X} 
ann(x) ∪ann(y)  ≠ ann(xy) in  X ∪ Y. Therefore,  xy ∈ E(AG(X∪Y)). 
Let xy ∈ E(AG(Y)) 
 ∴ann(x) ∪ann(y)  ≠ ann(xy) in Y. 
In X ∪ Y,ann(x) = X ∪ {ann(x) / x ∈ Y} 
 ann(y) = X ∪ {ann(y) / y ∈ Y} 
 ann(xy) = X ∪ {ann(xy) / x.y∈ Y} 
ann(x) ∪ann(y)  = X ∪ {ann(x) ∪ann(y) / x.y∈ Y} 
ann(x) ∪ann(y)  ≠ X ∪ {ann(xy) / x.y∈ Y} 
ann(x) ∪ann(y)  ≠ ann(xy) in  X ∪ Y.Therefore,  xy ∈ E(AG(X∪Y)). 
Let xy ∈ E(AG(X∪Y)), then ann(x) ∪ann(y)  ≠ ann(xy) in X∪Y.       
In X∪Y,ann(x) – (Y-{0}) = ann(x) in X. 
  ann(x)  = ann(x) ∪ (Y-{0}) in X. 
  ann(x)  = ann(x) ∪ Y in X. 
 [ann(x) ∪ Y] ∪ [ann(y) ∪ Y] ≠ [ann(xy) ∪ Y] if x,y∈ X (or) 
[ann(x) ∪ X] ∪ [ann(y) ∪ X] ≠ [ann(xy) ∪ X] if x,y∈ Y 
[ann(x) ∪ann(y)]∪Y ≠ [ann(xy) ∪ Y] in X (or) [ann(x)∪ann(y)]∪X ≠ [ann(xy)∪X] in Y 
ann(x) ∪ann(y) ≠ ann(xy) in X or ann(x) ∪ann(y) ≠ ann(xy) in Y 
Hence, either xy ∈ E(AG(X)) or xy ∈ E (AG(Y)).That is, xy ∈ E(AG(X)) ∪ E(AG(Y)). 
Hence, AG(X∪Y) = AG(X) ∪ AG(Y). 

Example 3.4. Let X={0,a,b,c} and Y={0,1,2,3}. Define two operations∗1 and •1 on 
Xand∗2, and  •2  on Y respectively. If Z∗(X) =Z(X) – {0} and Z∗(Y) =Z(Y) – {0}, then 
AG(X∪Y) = AG(X) ∪ AG(Y). Let X = {0,a,b,c} be a set with the  ∗  and • operations 
given by Table, 

  
 
 
 
 
  

∗∗∗∗1 0 a b c 
0 0 0 0 0 
 a a 0 a a 
b b b 0 b 
c c  c c 0 

•1 0 a b c 
0 0 0 0 0 
a 0 a 0 0 
b 0 0 b 0 
c 0 c 0 0 
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Clearly, (X,∗1, •1, 0)  is a Commutative KS-Semigroup. 
The ann(a) = { x ∈X / x ∧ a = 0, a ∈ X}. 
ann(0) = {0,a,b,c} ; ann(a) = {0,b,c} ; ann(b) = {0,a,c} ; ann(c) = {0,a,b}. 
The set of all zero divisors of X is  Z(X) = {0,a,b,c}. 
The vertex set Z∗(X) = Z(X) – {0} = {a, b, c}. 
The edge set = {xy/x ≠ y, x,y ∈ Z*(X), ann(x)  ∪ann(y) ≠ ann(xy)}.  

ann(a) ∪ann(b) = {0,a,b,c} = ann(ab) = ann(0) . 
ann(a) ∪ann(c) = {0,a,b,c} = ann(ac) = ann(0). 
ann(b) ∪ann(c) = {0,a,b,c} = ann(bc) = ann(0). 

The annihilator graph AG(X) of X is given by Figure 3.1  
 
 
  
 
 Let Y = {0,a,b,c} be a set with the  ∗  and • operations given by Table, 

 
 
 
 
 
 
 

Clearly, (Y,∗2, •2, 0)  is a Commutative KS-Semigroup. 
The ann(a) = { x ∈X / x ∧ a = 0, a ∈ X}. 
 ann(0) = {0,1,2,3} ; ann(1) = {0,3}; ann(2) = {0,1,3}; ann(3) = {0,1,2}. 
The set of all zero divisors of Y is Z(Y) = {0,1,2,3}. 
The vertex set Z∗(Y) = Z(Y) – {0} = {1, 2, 3}. 
The edge set = {xy/x ≠ y, x,y ∈ Z*(Y), ann(x)  ∪ann(y) ≠ ann(xy)}.  

ann(1) ∪ann(2) = {0,1,3} ≠ ann(12) = ann(0) = {0,1,2,3}  
ann(1) ∪ann(3) = {0,1,2,3} ≠ ann(13) = ann(1) = {0,3} 
ann(2) ∪ann(3) = {0,1,2,3}  ≠   ann(23) = ann(2) = {0,1,3} 

The annihilator graph AG(Y) of Y  is given by Figure 3.2 
 
 
 
 
The annihilator graph ofAG(X) ∪ AG(Y) is given as Figure 3.3 
 
 
 
 
 
 
 
 

∗∗∗∗2 0 1 2 3 
0 0 0 0 0 
 1 1 0 0 1 
2 2 2 0 2 
3 3 3 3 0 

•2 0 1 2 3 
0 0 0 0 0 
1 0 0 0 1 
2 0 0 0 2 
3 0 0 0 3 

2 

3 

1 

2 

3 

1 

a               b         
         c 

a               b          
 
        c 
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Let (X∪Y,∗,•,0) be a set with the  ∗  and • operations given by Table,  

 
 

 
 
 
 
  
 
 
 

Clearly, (X∪Y,∗, •, 0)  is a Commutative KS-Semigroup. 
∴ann(0) = {0,a,b,c,1,2,3}; ann(a) = {0,b,c,1,2,3}; ann (b) = {0,a,c,1,2,3} 
ann(c) = {0,a,b,1,2,3}; ann(1) = {0,3,a,b,c};ann(2) = {0,1,3,a,b,c};ann(3) = {0,1,2,a,b,c} 
The vertex set Z∗(X∪Y) = Z(X∪Y) – {0} = {a,b,c,1, 2, 3}. 
The edge set = {xy/x ≠ y, x,y ∈ Z*(X∪Y), ann(x)  ∪ann(y) ≠ ann(xy)}.  
  ann(a) ∪ann(b) = {0,a,b,c,1,2,3} = ann(ab) = ann(0) = {0,a,b,c,1,2,3} 
  ann(a) ∪ann(c) = {0,a,b,c,1,2,3} = ann(ac) = ann(0) = {0,a,b,c,1,2,3} 
  ann(b) ∪ann(c) = {0,a,b,c,1,2,3} = ann(bc) = ann(0) = {0,a,b,c,1,2,3} 
  ann(1) ∪ann(2) = {0,1,3,a,b,c}    ≠ ann(12) = ann(0) = {0,a,b,c,1,2,3} 
  ann(1) ∪ann(3) = {0,1,2,3,a,b,c} ≠ ann(13) = ann(1) = {0,3,a,b,c}  
 ann(2) ∪ann(3) = {0,1,2,3,a,b,c} ≠ ann(23) = ann(2) = {0,1,3,a,b,c}  
 ann(a) ∪ann(1) = {0,a,b,c,1,2,3} = ann(a1) = ann(0) = {0,a,b,c,1,2,3} 
 ann(a) ∪ann(2) = {0,a,b,c,1,2,3} = ann(a2) = ann(0) = {0,a,b,c,1,2,3}  
 ann(a) ∪ann(3) = {0,a,b,c,1,2,3} = ann(a3) = ann(0) = {0,a,b,c,1,2,3} 
 ann(b) ∪ann(1) = {0,a,b,c,1,2,3} = ann(b1) = ann(0) = {0,a,b,c,1,2,3} 
 ann(b) ∪ann(2) = {0,a,b,c,1,2,3} = ann(b2) = ann(0) = {0,a,b,c,1,2,3} 
 ann(b) ∪ann(3) = {0,a,b,c,1,2,3} = ann(b3) = ann(0) = {0,a,b,c,1,2,3} 
 ann(c) ∪ann(1) = {0,a,b,c,1,2,3} = ann(c1) = ann(0) = {0,a,b,c,1,2,3} 
 ann(c) ∪ann(2) = {0,a,b,c,1,2,3} =  ann(c2) = ann(0) = {0,a,b,c,1,2,3} 
 ann(c) ∪ann(3) = {0,a,b,c,1,2,3} = ann(c3) = ann(0) = {0,a,b,c,1,2,3} 
The annihilator graph AG(X∪Y) of  X∪Yis given in Figure 3.4. 
 
 
 
 
 
Hence, AG(X∪Y) = AG(X) ∪ ΑG(Y) . 
 
Example 3.5. Let X={0,a,b,c} and Y={0,1,2,3}. Define two operations∗1and  •1 on  X 
and∗2and  •2on  Y respectively,  
Let Z∗(X) =X – {0} and Z∗(Y) ≠ Y – {0}, then AG(X∪Y) ≠ AG(X)∪ AG(Y). 
 
 

∗∗∗∗ 0 a b c 1 2 3 

0 0 0 0 0 0 0 0 
a a 0 a a a a a 
b b b 0 b b b b 
c c c c 0 c c c 
1 1 1 1 1 0 0 1 
2 2 2 2 2 2 0 2 
3 3 3 3 3 3 3 0 

• 0 a b c 1 2 3 
0 0 0 0 0 0 0 0 
a 0 a 0 0 0 0 0 
b 0 0 b 0 0 0 0 
c 0 c 0 0 0 0 0 
1 0 0 0 0 0 0 1 
2 0 0 0 0 0 0 2 
3 0 0 0 0 0 0 3 

a               b          
 
c 

2 

3 

1 
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Let X = {0,a,b,c} be a set with the  ∗  and • operations given by Table, 
  
 
 
 
 
 
 

Clearly, (X,∗1, •1, 0)  is a Commutative KS-Semigroup. 
The ann(a) = { x ∈X / x ∧ a = 0, a ∈ X}. 
ann(0) = {0,a,b,c}; ann(a) = {0,b,c}; ann(b) = {0,a,c} ;   ann(c) = {0,a,b}. 
The set of all zero divisors Z(X) = {0,a,b,c}.The vertex set Z∗(X) = X – {0} = {a, b, c}. 
The edge set = {xy/x ≠ y, x,y ∈ Z*(X), ann(x)  ∪ann(y) ≠ ann(xy)}.  

ann(a) ∪ann(b) = {0,a,b,c} = ann(ab) = ann(0) = {0,a,b,c}. 
ann(a) ∪ann(c) = {0,a,b,c} = ann(ac) = ann(0) = {0,a,b,c}. 

 ann(b) ∪ann(c) = {0,a,b,c} = ann(bc) = ann(0) = {0,a,b,c}. 
The annihilator graph ofAG(X) of X is given by Figure 3.5 . 
 
 
 
 
Let Y = {0,1,2,3} be a set with the  ∗  and • operations given by Table, 

 
 

 
 
 
  
 
 Clearly, (Y,∗2, •2, 0)  is a Commutative KS-Semigroup. 
The ann(a) = { x ∈X / x ∧ a = 0, a ∈ X}. 
 ann(0) = {0,1,2,3}; ann(1) = {0,2}; ann(2) = {0,1}; ann(3) = {0}  
The set of all zero divisors Z(Y) = {0,1,2}.The vertex set Z∗(Y) ≠ Y – {0}. 
Z∗(Y) = {1, 2}. 
The edge set = {xy/x ≠ y, x,y ∈ Z*(Y), ann(x) ∪ann(y) ≠ ann(xy)}.  
 ann(1) ∪ann(2) =  {0,1,2} ≠  ann(12) = ann(0) = {0,1,2,3} 
 
The annihilator graph AG(Y) of Y is given by Figure 3.6  
 
  
 
The annihilator graph of AG(X) ∪ AG(Y) is given as Figure 3.7 
 
 
 

•1 0 a b C 
0 0 0 0 0 
a 0 a 0 0 
b 0 0 b 0 
c 0 c 0 0 

∗∗∗∗1 0 a b c 
0 0 0 0 0 
 a a 0 a a 
b b b 0 b 
c c c c 0 

∗∗∗∗2 0 1 2 3 
0 0 0 0 0 
 1 1 0 1 0 
2 2 2 0 0 
3 3 2 1 0 

•2 0 1 2 3 
0 0 0 0 0 
1 0 1 0 1 
2 0 0 2 2 
3 0 1 2 3 

1               2   

1               2   a               b          
 
        c 

a               b         
         c 
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Let (X∪Y,∗,•,0) be a set with the  ∗  and • operations given by Table, 

 
 

 
 
 
 
  
 
 

 Clearly, (X∪Y,∗, •, 0)  is a Commutative KS-Semigroup. 
  ann(0) = {0,a,b,c,1,2,3}; ann(a) = {0,b,c,1,2,3}; ann (b) = {0,a,c,1,2,3} 
ann(c) = {0,a,b,1,2,3};ann(1) = {0,2,a,b,c}; ann(2) = {0,1,a,b,c}; ann(3) = {0,a,b,c}. 
The vertex set Z∗(X∪Y) = Z(X∪Y) – {0} = {a,b,c,1, 2, 3}. 
The edge set = {xy/x ≠ y, x,y ∈ Z*(X∪Y), ann(x)  ∪ann(y) ≠ ann(xy)}.  
  ann(a) ∪ann(b) = {0,a,b,c,1,2,3} = ann(ab) = ann(0) = {0,a,b,c,1,2,3} 
  ann(a) ∪ann(c) = {0,a,b,c,1,2,3} = ann(ac) = ann(0) = {0,a,b,c,1,2,3} 
  ann(b) ∪ann(c) = {0,a,b,c,1,2,3} = ann(bc) = ann(0) = {0,a,b,c,1,2,3} 
  ann(1) ∪ann(2) = {0,1,2,a,b,c}    ≠ ann(12) = ann(0) = {0,a,b,c,1,2,3} 
  ann(1) ∪ann(3) = {0,2,a,b,c}       = ann(13) = ann(1) = {0,2,a,b,c} 
 ann(2) ∪ann(3) = {0,1,a,b,c}       = ann(23) = ann(2) = {0,1,a,b,c} 
 ann(a) ∪ann(1) = {0,a,b,c,1,2,3} = ann(a1) = ann(0) = {0,a,b,c,1,2,3} 
 ann(a) ∪ann(2) = {0,a,b,c,1,2,3} = ann(a2) = ann(0) = {0,a,b,c,1,2,3} 
  ann(a) ∪ann(3) = {0,a,b,c,1,2,3} = ann(a3) = ann(0) = {0,a,b,c,1,2,3} 
 ann(b) ∪ann(1) = {0,a,b,c,1,2,3} = ann(b1) = ann(0) = {0,a,b,c,1,2,3} 
 ann(b) ∪ann(2) = {0,a,b,c,1,2,3} = ann(b2) = ann(0) = {0,a,b,c,1,2,3} 
 ann(b) ∪ann(3) = {0,a,b,c,1,2,3} = ann(b3) = ann(0) = {0,a,b,c,1,2,3} 
 ann(c) ∪ann(1) = {0,a,b,c,1,2,3} = ann(c1) = ann(0) = {0,a,b,c,1,2,3} 
 ann(c) ∪ann(2) = {0,a,b,c,1,2,3} = ann(c2) = ann(0) = {0,a,b,c,1,2,3} 
 ann(c) ∪ann(3) = {0,a,b,c,1,2,3} = ann(c3) = ann(0) = {0,a,b,c,1,2,3} 
The annihilator graph of  AG(X∪Y)) Figure 3.8 
 
 
 
 
Hence, AG(X∪Y) ≠ AG(X) ∪ ΑG(Y) 

 

 

 

 

 

• 0 a b c 1 2 3 
0 0 0 0 0 0 0 0 
a 0 a 0 0 0 0 0 
b 0 0 b 0 0 0 0 
c 0 c 0 0 0 0 0 
1 0 0 0 0 1 0 1 
2 0 0 0 0 0 2 2 
3 0 0 0 0 1 2 3 

∗∗∗∗ 0 a b c 1 2 3 

0 0 0 0 0 0 0 0 
a a 0 a a a a a 
b b b 0 b b b b 
c c c c 0 c c c 
1 1 1 1 1 0 1 0 
2 2 2 2 2 2 0 0 
3 3 3 3 3 2 1 0 

a               b          
 
      c 

1               2         
 
      3 
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