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Abstract. In this paper, lexicographic products of two fugzgphs namely, lexicographic

min-product and lexicographic max-product which aealogous to the concept

lexicographic product in crisp graph theory ardarded. It is illustrated that the operations
lexicographic products are not commutative. Theneated, effective and complete
properties of the operations lexicographic prodacesstudied. The degree of a vertex in
the lexicographic products of two fuzzy graphs lisatned. A relationship between the
lexicographic min-product and lexicographic maxepret is also obtained.
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1. Introduction

Fuzzy graph theory was introduced by Azriel Roseniie 1975. Later on, Bhattacharya
[1] gave some remarks on fuzzy graphs. Some opegton fuzzy graphs were
introduced by Mordeson and Peng [3]. We defineddinect sum of two fuzzy graphs
and studied the properties of that operation [6§oAve defined the strong product of two
fuzzy graphs and studied its properties [8]. I1s théper, we have introduced the concept
of lexicographic products of two fuzzy graphs namébxicographic min-product and
lexicographic max-product which are analogous ®dhncept lexicographic product in
crisp graph theory. We have illustrated that theserations are not commutative and
studied the connected, effective and complete ptiegeof these operations. We have
obtained the degree of a vertex in the lexicogm@oducts of two fuzzy graphs and
obtained a relationship between the lexicographi-pnoduct and lexicographic max-
product. First let us recall some preliminary diiiims that can be found in [1]-[9]. A
fuzzy graph G is a pair of functions, (1) whereo is a fuzzy subset of a non empty set V
and u is a symmetric fuzzy relation os. The underlying crisp graph of G;(u) is
denoted by G*:(V, E) where BVxV. G:(o, p) is called a connected fuzzy graph if for
all u, VOV there exists at least one non-zero path betweand v. G, p) is called
effective if w(u v) =o(u) Oo(v) for all u VJE and complete ifi(u v) =o(u) Oo(v) for all
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u, VCIV. The degree of a vertex u of G,) is defined ag;(u)=> p(uv)=> p(uv).

uzv wE
G':(o’, ) is called a spanning fuzzy sub graph ofoGp if 6 = ¢’ andy’ O y, that is, ifo
(u)=c'(u) for every WV and p'(ex u(e) for every EE. The lexicographic product of
Gi(Vy,E) with Gy (V,,Ey) is defined as §G,):(V, E) where V=V(xV, and E={(u,
V1)(Up, Vo)/up WOE; or b= W, and v Vv,0E,}.

2. Lexicographic min-product
Definition 2.1. Let Gy:(o1,11) and G:(o2,u2) denote two fuzzy graphs. Define &:{1)
with underlying crisp graph G*:(V,E) where V¥V, E={(u1,v1)(Uz,V2)/u; WLE; or
Ui=u, and v V,0Ez}, by, o(uy, Vi) = o1(ur) Ooy(vy), for all (w, vi) OV; x V, and

| g(uyuy) Jifuu,0E;
(k) v) '{olwlmuz(vlvz) ifu,=u, vy OE,
If U0, ma(Us W) = o1(Ur) To1(Up) < [01(us) Too(V1)]  61(Un) Toa(V2)]=0 (U, V1) Oo (U, Vo).
If ui= W, vi V0B, o1(U)0ua(vi Vo)< o1(U) O [o2(vi) O o2vo)]= [o1(us)Uoz(vi)] O
[01(U2) Bo2(v2)] < [o1(U)Doz(va)] U [o1(Uz)Doz(v2)]= o(us, Vi) Do(, Vo).
Hencep((ug, vi)(Up, Vo)) < o(us, V1) Oo(up, Vo). Therefore G¢, w) is a fuzzy graph. This
is called the lexicographic min-product of Bith G, and is denoted by {& ;] min: (0, ).

Remark 2.1. The operation lexicographic min-product of two fuzgraphs is not
commutative. That is BGomini(o, p) is different from G[Gy]min:(c’, W'). This is
illustrated through the following Figure-1.

G0y, ) G2:(02, ) Gi[Gslnmin (0, 1 GG mintl0”, 1) 1 (0.5)
uy(0.5) Us(0.4) vA(0.4) ups{015) 0 0 bg YA05)

0.4
0.5 s 0.4 0.4 3 o4 !
Usvi0.5) 108 vs(0s) ‘ s
2{0.6) 1(0.5)
! ! uav0.6) vau0.6)
Figure 1.

Remark 2.2. The lexicographic min-product of two effective fyzgraphs need not be
effective. Also the lexicographic min-product ofawomplete fuzzy graphs need not be
complete. The following Figure-2 illustrates thésmark.

G0y, 1) Gz:loz, 5} G1lGz2lmini(@, 1)
1,(0.3) va(0.4) Ly vy (0. 4) 0.3 g v2(0.5)
0.2
0.2 0.2
0.2 0.4
0.2
uz(0.2] w2(0.5) Uz wy(0.4) 0.2 Uz wol0.5)
Figure2:

Notation: The relations; < o, means that(u) < o,(Vv) for every WV, and for every
vV, whereg; is a fuzzy subset of Vi =1,2.
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Theorem 2.1. If Gy:(o1,1a) and G:(o2,u2) are two effective fuzzy graphs with underlying
crisp graphs &:(V ,E;)) and G*:(V »,E,) respectively such that > o, andp, andy, are
constant functions of same value, then the lexiglgic min-product of G&(c1,u;) with
Gq:(o,,1p) is an effective fuzzy graph.

Proof: Proceeding as in the definition, ifud0E;, pu((uy, vi)(Uz, V2)) = pa(Uilz) = o1(Uy)
Oo1(Up) = o(uy, V1) Oo(uy, Vo). If ui=u, and \v,UE,, u((Ug,vi)(Up, Vo)) = pa(VaVa) = pa(ugUy)

= 61(u1) Uoa(Up) = o(Ug,v1) Uo(Uz,v2). Thusp((uy,vi)(Uz,V2)) = o(uy, Vi) Uo(up, Vo) for all
((ug, vp)(uz, V2)) OE. Hence dGomini(o, 1) is an effective fuzzy graph.

Remark 2.3. In theorem 2.1 if we replaces;'> 65" by “o1 < 6" then G[G,] will be
replaced by g§G,]. Also theorem 2.1 is true for the complete fugzgphs.

Theorem 2.2. The lexicographic min-product &;]min:(c, p) of two connected fuzzy
graphs Gi(o1,11) and G:i(oaup) is a connected fuzzy graph if and only if:@4,1) is
connected.
Proof: From the definition, §G;]min:(o, 1) has || copies of G That is for each vertex
in G, there is a copy of Gn Gy[G2]min:(o, 1). Also G, is connected. Hence [& ;] min: (o,
) is connected.

Conversely, assume thai:(&1,11) and G:(o2,112) be two fuzzy graphs such that
G1[G2]min:(o, W) is connected. To prove:1&oy,114) iS connected.
Suppose that Joy,14) is not connected. Then there exists at leastdifferent vertices
Uy, W in Vi such that there is no path between them. But sB§&]min:(c, 1) is
connected, for any two vertices of the form, (&) and (y, vj) OV, x V, there is at least
one path between them. This implies that there rhasat least one path between the
vertices y, W. This is a contradiction. Hence (& 1,u1) is connected.

Example 2.1. Consider the two fuzzy graphs:&1,1) and G:(oo,12) Where G:(og,u)
is not a connected fuzzy graph and:(&..) is a connected fuzzy graph. The
lexicographic min-product of Jo1,111) with Gy:(o2,10) iS not a connected fuzzy graph.

Gi:lay, i) Gz:(os, i) GilG:lini(o, 1)
Not connected Connected Mot connected

uy vo{0.6)

Ly v,(U.T)./N\q(D.T)
uz(0.6) Ug(0.7) wo(0.6)

0.5 0.5
0.5
5 5 s
0.4
.6 0.8 Uz w06}
0.4

Uz vy (0.7)
Ugve(0.7)
Uy (0.5} Us(0,4) w(0.7) b,
.

Uz v3{0.6]

Uy z(0.7)

Figure3:
Theorem 2.3. The number of connected components in the lexi@gcamin-product
G1[G2]min:(o, W) of the fuzzy graph Ho1,111) With Gy:(o,,12) is equal to that of the fuzzy
graph G:(o1,).
Proof: Let G;:(o4,111) be a connected fuzzy graph angd(&,u,) be a fuzzy graph.Then
by theorem 2.2 the lexicographic min-produgf®&]in:(c, 1) is connected. This implies
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that both G and G[G]min:(o, 1) are connected and hence the theorem. Suppdsiia¢ha
fuzzy graph G(oy,14) is not connected and has ‘m’ disjoint connectachgonents(say).
Then we can rename the vertices gfitsuch a way that

{ug, oo Uy {Ukaezs Uerezy ey Ueabyeennns AUkm +1 W +2,-..,Um+p @re the vertex sets of
the ‘m’ disjoint connected components of @ {v 1, V,,....,\i} is the vertex set of &hen

for each vertex vin G,, there is a copy of each connected component ah Ghe
lexicographic min-product BG;]min:(o, w). There is no edge between these components.
For, if there is an edge betweeiv;uu.1vi, then there must be an edge betwegmigl.,

in G, which is a contradiction. Thus each connected amapt in the lexicographic min-
product G1[G]mn:(o, p) is disjoint from every other component and hethestheorem.

Example 2.2. The following Figure 4 gives an example of the éexjraphic min-product
of the fuzzy graph &(c1,11) with Gyi(o,,1) Where G:i(og,u4) is not a connected fuzzy
graph with three disjoint connected components(dgu,) is a connected fuzzy graph
and G[G]min is @ non-connected fuzzy graph with three disjodrinected components.

G:loy, jy) Galo, 1) Gi[Ga] min {0, )
Mot connected Connected Not connected U, ¥2(0.6)
Ua{0.7) uz(0.4)
—_— »
0.4
uz{0.8) Us(0.8) va(0.8)
0.5 0.6 0.6
Ly (0.5) Ls(0.6) vy (0.7)

Uy wa(0.7) 0.6 Ugvs(0.7)

Figure4:

3. Degree of avertex in the lexicogr aphic min-product
The degree of any vertex in the lexicographic miodpctG[G,].i, of the fuzzy graph

Gi:(o1,11) With Gy (o2,112) IS given by,
Aojo (WoV)= 2 HmUU P X o (W)OH, (V)

uu OB 0V U=y .y vOE

Theorem 3.1. If Gy:(o1,11) and G:(o,,u2) are two fuzzy graphs such that> y,, then the
degree of a vertex in the lexicographic min-prodegG,]min:(c, 1) of the fuzzy graph

Gi:(o1,1) With Gyi(o2,412) is given bdel[G LU=V G W)
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Proof: Let Gi:(o1,111) and G:(o2,u2) be two fuzzy graphs such that> p,. This implies
that o1 0 p, = po. Then the degree of any vertex;, (w)JVixV, is given by,

Ao, WoV)= D2 MUY DX oK (YV)

uu 08 0\ U=y .y vOB
=V, Y muu)t D ()= ldy (U G (Y
U u 05 y=y yvoB

Corollary 3.1. If Gi:(o1,11) and G:(o,,u) are two fuzzy graphs such that> p,andy, is
a constant function of value ‘c’, then the degréa aertex in the lexicographic min-
product G[Gy]min:(o, w) of the two fuzzy graphs Goi,1i) and G:(o,,up) iS given by,

del[ez]min W, Vi )=\ |q;1 yr %*2 (Y )C

Theorem 3.2. If Gy:(o1,11) and G:(o,,up) are two fuzzy graphs such that< p, then the
degree of a vertex in the lexicographic min-prod@dG;]min:(c, w) of the fuzzy graph

Grlouu) With Gilozpa) 1 GVenbY.q (. v)=1V Id, () &, (y 3 ()
Proof: Let G, :(o1,111) and G:(o2,112) be two fuzzy graphs such that< u,. This implies
that 6; O w, = o1. Then, the degree of any vertex;, ()OVxV, is given by,
dofey. (UV)=IN I U D, o (WHK, (YY)

U=t v v, 06

=V ldg W)+ 2 o RV I Wr d (vo,

Ui =u v v, 06

Corollary 3.2. If G1:(o1,11) and G:(o,,112) are two fuzzy graphs such that< p, ando; is
a constant function of value ‘c’, then the degréa wertex in the lexicographic min-
product G[G]min:(c, w) of the fuzzy graph ((oi,u) with Gy(o,up) is given by,

Qo o0, (U VD=1 [, (U ) ¢ (y)c

Example 3.1. Consider the two fuzzy graphs:(s1, 1) and G:(o2, pp) such that;> po,.
Their lexicographic min-product {&;]min:(c, 1) is given in Figure-1 of Remark 2.1.

Now, dsc,, (U, V,)=20and |V [d (W3 d (v9 2(08 0%) 04 .

Consider the two fuzzy graphs;(s;, n;) and G:i(o, u) such thato; < p,. Their
lexicographic min-product G,]min:(o, 1) is given in Figure - 2 of Remark 2.2. Now,

ds,je,1,, (W:W)=0.7 and |Y [d (W} d (9, (3 2 02x1 03 (

3.1. Lexicographic max-product
Definition 3.1.1. Define G:¢, p) with underlying crisp graph G*:(V, E) where V£V,
E = {(uy, v1)(Uz, Vo) / th WOE; Or u= U, and v V2.0E5} by, o(us, va) = 61(u) O ox(va), for
all (uy, vo) OV x V, and

M, (U, u,) Jfuu,0E
|J-((u1: Vl)(uza Vz)) :{ 1\M1 M2 - 1_2 1

Gl(ul) O Hz(Vle) Jifu 1= Uy VyV ZD E 2
If U1U2|:|E1, ul(ul UZ)=(51(U1)|:b1(U2)S [Gl(ul) Ebz(vl)] D[G]_(UZ)D GZ(VZ)] = G(Ul,Vl)Eb(UZ, V2).
If U1=Up,V1V20E5, 61(Ur) Oua(Va V2)<o1(Uy) [ o2(V1) Doa(V2) = 61(Ur) Doo(Va) | [ o1(Uz) Doa(V2)]

173



On Lexicographic Products of Two Fuzzy Graphs

=o(uy, Vo) Oo(uz, Vo).
Hencep((us, vi)(Uz, Vo)) < o(ug, Vi) Oo(uy, Vo). Therefore G, p) is a fuzzy graph. This
is called the lexicographic max-product of With G, and is denoted by &;] max (o, 1)

Remark 3.1.1. The operation lexicographic max-product of two fuzgraphs is not
commutative. That is, B5,]max(0, 1) # Go[G1]max (o', 1'). Also the lexicographic max-
product of two effective fuzzy graphs need not ffective and the lexicographic max-
product of two complete fuzzy graphs need not beraplete. It is illustrated through the
following Figure-5.

Guloy, i) G:(0n, i) Gi[Gz i (0, 1) G3[G1] i (0 17

u,(0.3) w(0.4) upvi(0d)  gg HivA0.5) vius(04)  gg Y Uel0.9)

0.2 0.4

0.2 0.4

Uz(0.2) v2(0.5) 0.5

uzvi(0.4) n.4 Lavo{0.5) vzui(0.4)
Figureb5:

Theorem 3.1.1. The lexicographic max-product;[&;]max(c, 1) of two connected fuzzy

graphs Gand Gis a connected fuzzy graph if and only if &1,111) is connected.

(Proof of this theorem is similar to the proof bébrem 2.2.)

v uz(0.5)

Theorem 3.1.2. The number of connected components in the lexigigcamax-product
Gi[Golmax (o, 1) of the fuzzy graph Gwith G, is equal to that of the fuzzy graph
G1:(o1,1).(Proof of this theorem is similar to the prooftbéorem 2.3.)

3.2. Degree of avertex in the lexicographic max-product
The degree of any vertex in the lexicographic meodpctG[G,Jof the fuzzy graph
Gi:(o1,11) With Gy (o2,112) IS given by,

Ao WHV)= 20 WU X o U)K (YVY).

U OE %OV, y=u Y vOB

Theorem 3.2.1. If G1:(og,11) and G:(o,,112) are two fuzzy graphs such tha y,, then
the degree of any vertex inGz]max (o, 1) is given by,

de6,0, UV )= 1D (W d) ()

Proof: Let G;:(o1,111) and G:(o2,u,) be two fuzzy graphs such that< p,. This implies
that o; O p, = . Then the degree of any vertex;, (w)OV.xV, is given by,

del[ez]max(ui V)= Z WYy r Z o U)X (Yyv)

U U UE VOV Y=Y Yy
=V, muud > (V)= T () g (o
uiu OE y=4 .yvik
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Corollary 3.2.1. If Gy:(o1,11) and G:(o2,u2) are two fuzzy graphs such that< p,, and
12 is a constant function of value c, then for anytesefu, V) in G[G2]max (o,1) is given

%Y. e @)=Y 1D (U 4 (y)e

Theorem 3.2.2. If G1:(oy,11) and G:(o,,112) are two fuzzy graphs such that y,then
the degree of any vertex inGz]max (o, 1) is given by,

dcl[ez]max(ui V)=V |(191 (Y %*2 (Y o ()
Proof: Let Gi:(o1,111) and G:(o2,u2) be two fuzzy graphs such that> p,. This implies
that o, O w, = o1. Then, the degree of any vertex; (¥)0V.xV, is given by,

dofe. UV)=IN I (W Y o, (WO, (YV)

U=y, v,06

=V, ldg W)+ > o W)=V Idy () d (Yo, (u
Ui = v v, 06
Corollary 3.2.2. If G1:(o1,111) and G:(oa,u2) are two fuzzy graphs such that> p, ando;
is a constant function of value c, then the degfeany vertex in @Gz]max (o, 1) iS given

Y dg e W)= T, (G 4 (y)e

2] max

Example 3.2.1. Consider the two fuzzy graphs:(s;, u1) and G:(ozu,) such thai; <
K. Their lexicographic max-product {f&;]max (o, W) is given in Figure-5 of Remark

3.1.1. Now,
dee,,. (. v)=08and |V |d W) d W3 2 02 04

Consider the two fuzzy graphs,.(s, p)and G:(oi, W) such thato, > . Their
lexicographic max-product f&51]max (6', ') is given in Figure-5 of Remark 3.1.1. Now,

o6, (V2o )=13 and |Y |[d (¥ d (9, (y5 2 04 x1 05

3.3. Relationship between the lexicographic products

Theorem 3.3.1. The lexicographic min-product ({&;]min:(c, n) of the fuzzy graph &
with G; is a spanning fuzzy sub graph of the lexicograpté&-product G, max (T, v).
Proof: Consider the lexicographic productg[G;]max(t, v) and G[Ga]min:(c, ) of G
with G, defined on G*:(V,E) where V=3V, E={(uy, V1) (U, V2) / LiU0E; or u=u, and
v1 VLOEL}.From the definitions of the lexicographic max-geet, and the lexicographic
min-product, it is clear thatuy, vi) = o(uy, Vi) for all (w, v4) OV and

({0 ) (1 v) 20 ((w ) . ) foral w, Yy, 90 ¢

Thust = anduld v. Hence the lexicographic min-product is a spanfiirzgy sub graph
of the lexicographic max-product.

Example 3.3.1. Consider the following Figure-6. Here the lexicqare min-product

GG min:(o, 1) is a spanning fuzzy sub graph of the lexicograpiiax-product
G1[G2]max (1, V).
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Gy, f4) Ga:(0, f1) GGz ] (T, ¥) G1[Galmint (o, 1)

e (0.3) vy(0.4) upvi(0.4) g Urva(D5) Uy w(0.4) 0.3 Lig ¥o(0.5)

0.2 0.2

0.2 0.2

» ]

uzvi(na) 04 s Uzv4(0.4) 0.2 uzw3(0.5)

Figure®6:

uz(0.2) wa(0.5)

7. Conclusion

In this paper, we have introduced the concept xitégraphic products of two fuzzy
graphs namely, lexicographic min-product and legiaphic max-product which are
analogous to the concept of lexicographic productciisp graph theory. We have
illustrated that the operations lexicographic padware not commutative and studied the
connected, effective and complete properties ofeh@perations. We have obtained the
degree of a vertex in the lexicographic productdved fuzzy graphs. Also we have
obtained a relationship between the lexicographi-pnoduct and lexicographic max-
product. In addition to the existing operationsstheperations and properties will also be
helpful to study large fuzzy graph as a combinattbsmall fuzzy graphs and to derive
its properties from those of the small ones.
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