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Abstract. Let G=(V, E) be a graph. Let S be the set of all minimal dominating sets of G. 
Let x, y, z be three variables each taking value + or –. The entire transformation graph 
Gxyz is the graph having V∪S as the vertex set and for any two vertices u and v in V ∪ S, 
u and v are adjacent in Gxyz if and only if one of the following conditions holds: (i) u, v 
∈ V. x = + if u, v ∈D where D is a minimal dominating set of G. x = – if u, v ∉ D where 
D is a minimal dominating set of G. (ii) u, v ∈ S. y = + if u ∩ v ≠ φ . y= – if u ∩ v = φ 
(iii) u ∈ V and v ∈ S. z = + if u ∈ v. z = – if u ∉ v. In this paper, we initiate a study of 
entire dominating transformation graphs in domination theory. Also we introduce some 
fuzzy transformation graphs.  

Keywords: dominating graph, semientire dominating graph, entire dominating graph, 
fuzzy entire dominating graph, transformation 

AMS Mathematics Subject Classification (2010): 05C72 

1. Introduction 
The graphs considered in this paper are finite, undirected without loops and multiple 
edges. Any undefined term here may be found in [1]. 

Let G=(V, E) be a graph. A set D ⊆ V is a dominating set of G if every vertex in 
V – D is adjacent to some vertex in D. The domination number γ(G) of G is the minimum 
cardinality of a dominating set of G. Recently several domination parameters are given in 
the books by Kulli in [2, 3, 4]. 

A dominating set D of G is minimal if every v ∈ D, D – { v} is not a dominating 
set of G. 

Let S be the set of all minimal dominating sets of G. 
The entire dominating graph ED(G) of G is the graph with the vertex set V ∪ S in 

which two vertices u, v are adjacent if u, v ∈ D, where D is a minimal dominating set in 
G or u, v ∈ S and u ∩ v ≠ φ or u ∈ V and v is a minimal dominating set in G containing u. 
This concept was introduced by Kulli in [5]. Many other graph valued functions in 
domination theory were studied, for example, in [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] and 
also graph valued functions in graph theory were studied, for example, in [17, 18, 19, 20, 
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]. 
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The semientire dominating graph Ed(G) of G is the graph with the vertex set V ∪ S in 
which two vertices u, v are adjacent if u, v ∈ D, where  D is a minimal dominating set in 
G or u ∈ V and v is a minimal dominating set in G containing u. This concept was 
introduced by Kulli in [33]. 

The dominating graph D(G) of G is the graph with vertex set V ∪ S in which two 
vertices u, v are adjacent in D(G) if u ∈ V and v is a minimal dominating set of G 
containing u. This concept was introduced in [34]. 

The middle dominating graph Md(G) of G is the graph with vertex set V ∪ S in 
which two vertices u, v are adjacent in Md(G) if u ∩ v ≠ φ where u, v ∈ S or u ∈ V and v 
is a minimal dominating set of G containing u. This concept was introduced in [35]. 

The common minimal dominating graph CD(G) of G in the graph having the 
same vertex set as G with two vertices in CD(G) adjacent if u, v ∈ D where D is a 
minimal dominating set in G. This concept was introduced in [36]. 

The minimal dominating graph MD(G) of G is the graph with minimal 
dominating sets as its vertices in which two vertices u, v are adjacent in MD(G) if u ∩ v 
≠ φ. This concept was introduced in [37]. 

Let G  denote the complement of G. 
 
2. Entire dominating transformation graphs 
Inspired by the definition of the entire dominating graph of a graph, we introduce the 
following transformation graphs. 
 
Definition 1. Let G = (V, E) be a graph and let S be the set of all minimal dominating sets 
of G. Let x, y, z be three variables each taking value + and –. The entire dominating 
transformation graph Gxyz is the graph having V∪S as the vertex set and for any two 
vertices u and v in V∪S, u and v are adjacent if and only if one of the following 
conditions holds: 
i) u, v ∈ V. x = + if u, v ∈ D where D is a minimal dominating set of G. x = – if u, v 

∉ D where D is a minimal dominating set of G. 
ii) u, v ∈ S. y = + if u ∩ v ≠ φ. y = – if u ∩ v =φ.  
iii) u ∈ V and v ∈ S. z = + if u ∈ v. z = – if u ∉ v.  
 
        Using the above entire transformation, we obtain eight distinct entire transformation 
graphs: G+++ , G+ –+, G++ –, G–++, G+ – –, G–+ –, G– – +, G – – –. 
 
Example 2. In Figure 1, a graph G, its entire transformation graphs G+++ and G– – – are 
shown. 
 
Proposition 3. For any graph G, 

i)   G G+++ − − −=  ii)    G G++ − − − +=  

iii)    + G G+ − + − −=  iv)    + G G+ − − − +=  
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          G   G+++           G– – –   
Figure 1 

 
3. The entire transformation graph G+++ 
Among entire transformation graphs one is the entire dominating graph G+++. Therefore 
we have 
 
Proposition 4. For any graph G, ED(G) = G+++. 
 
Remark 5. For any graph G, Ed(G) is a spanning subgraph of G+++. 
 
Remark 6. For any graph G, D(G) is a spanning subgraph of G+++. 
 
Remark 7. For any graph G, Md(G) is a spanning subgraph of G+++. 
 
Remark 8. For any graph G,  MD(G) and CD(G) are vertex and also edge disjoint 
induced subgraphs of G+++. 
 
Theorem A[5]. For any graph G, ED(G) is complete if and only if G is totally 
disconnected. 
 
Theorem 9. For any graph G,  G+++  is complete if and only if G is totally disconnected. 
Proof: This follows from Proposition 4 and Theorem A. 
 
Theorem B[5]. For any graph G, Ed(G)= ED(G) if and only if one of the following 
conditions holds. 

i) G has exactly one minimal dominating set containing all vertices of G. 
ii)  Every pair of minimal dominating sets of G are disjoint. 

 
Theorem 10. For any graph G,  G+++  = Ed(G) if and only if one of the following 
conditions holds. 

i) G has exactly one minimal dominating set containing all vertices of G. 
ii)  Every pair of minimal dominating sets of G are disjoint. 

Proof:  This follows from Proposition 4 and Theorem B. 
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4. The entire transformation graph G+ – + 

We start with some simple observations. 
 
Remark 11. For any graph G, Ed(G) is a spanning subgraph of G+ – +. 
 
Remark 12. For any graph G, CD(G) is a spanning subgraph of G+ – +. 
 
Remark 13. For any graph G, CD(G) and D(G) are edge disjoint subgraphs of G+ – +. 
 
We characterize graphs whose transformation graphs G+ – + are complete. 
 
Theorem 14. The transformation graph G+ – + is complete if and only if G is totally 
disconnected. 
Proof: Suppose G is totally disconnected. Then G has exactly one minimal dominating 
set D containing all vertices of G. Let u be the corresponding vertex of D in G+ – +. Thus 
the vertex set of G+ – + is V ∪{ u}. Since D contains all vertices of G and D is the only 
minimal dominating set in G, every two vertices are adjacent in G+ – +. Thus G+ – + is 
complete. 

Conversely suppose G+ – + is complete. We now prove that G is totally 
disconnected. On the contrary, assume G is not totally disconnected. Then there exist 
minimal dominating sets D1 in D2 in G. We consider the following two cases. 
Case 1. Suppose D1 ∩ D2 ≠ φ. Then corresponding vertices of D1 and D2 are not adjacent 
in G+ - +, a contradiction. 
Case 2. Suppose D1 ∩ D2 = φ. Let D1={u1, u2, ..., um, m ≥1} and D2={v1, v2, ..., vn, n ≥1}. 
Then there exist vertices ui in D1 and vj in D2 such that ui and vj are not adjacent in G+ - +, 
which is a contradiction. 

From Case 1 and Case 2, we conclude that G has exactly one minimal 
dominating set which contains all vertices of G. This implies that G is totally 
disconnected. 
 
Theorem 15. If G is not a nontrivial complete graph, then G+ - + contains a triangle. 
Proof: Suppose G≠Kp, p≥2. Then G has at least one minimal dominating set D containing 
two or more vertices. Let u1, u2, ..., un ∈ D, n≥2. Then the corresponding vertices of  u1, 
u2, ..., un and D in G+ - + are mutually adjacent. Hence G+ - + contains a triangle. 
 
Theorem 16. G+ - + =  K+

p if and only if G = Kp.  
Proof: Suppose G = Kp. Then each vertex vi of Kp forms a minimal dominating set {vi}. 
Thus vi and {vi} are adjacent vertices in G+ - +. Since {vi} ∩{vj}=φ, for 1≤ i, j ≤ p, it 
implies that every pair of minimal dominating sets are adjacent in G+ - +. Also since each 
minimal dominating set {vi} contains only one vertex, it follows that no two 
corresponding vertices of V are adjacent in G+ - +. Thus G+ - + = K+

p. 
 Conversely suppose G+ - + = K+

p. We now prove that G = Kp. Assume G ≠ Kp. By 
Theorem 15, at least two corresponding vertices of G lie in a triangle. Thus G+ - + ≠ K+

p, 
which is a contradiction. Thus G = Kp. 
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The above theorem may be written as 
 
Theorem 17.  G+++  = K+

p if and only if each minimal dominating set of G contains 
exactly one vertex.  
 
5. Fuzzy transformation graphs 
In this section, we present some fuzzy transformation graphs in  fuzzy domination theory. 

A fuzzy graph G = (V, σ, µ) is a nonempty set V together with a pair of functions 
σ : V → [0, 1] and µ : V×V → [0, 1] such that µ(uv) ≤ σ (u)∧σ (v) for all u, v ∈ V. 

A subset D of V is said to be a fuzzy dominating set of a fuzzy graph G if for 
every v ∈ V – D, there exists u ∈ D such that (u, v) is a strong arc. The fuzzy domination 
number γ(G) of a fuzzy graph G is the minimum cardinality of a  fuzzy dominating set of 
G. This concept was introduced by Nagoor Gani and et.al. in [38]. A fuzzy dominating 
set D of a fuzzy graph G is called a minimal fuzzy dominating set of G if for every node 
v ∈ D, D – {v} is not a fuzzy dominating set. 

Let G=(V, σ, µ) be a fuzzy graph. Let S be the set of all minimal fuzzy dominating 
sets of G. 

The fuzzy dominating graph Fd(G) of a fuzzy graph G is the fuzzy graph with a 
nonempty set V ∪ S and for any two nodes u, v in V ∪ S, (u, v) is a strong arc if u ∈ V 
and v is a minimal fuzzy dominating set of G containing u. 

The fuzzy minimal dominating graph FMd(G) of a fuzzy graph G is the fuzzy 
graph with a nonempty set S and for any two nodes u, v in S, (u, v) is a strong arc if u ∩ v 
≠ φ. 

The fuzzy common minimal dominating graph FCd(G) of a fuzzy graph G is the 
fuzzy graph with the same nonempty set V as G and for any two nodes u, v in V, (u, v) is 
a strong arc if u, v ∈ D, where D is a minimal fuzzy dominating set in G. 

The fuzzy semientire dominating graph FSd(G) of a fuzzy graph G is the fuzzy 
graph with a nonempty set V ∪ S and for any two nodes u, v in V ∪ S, (u, v) is a strong 
arc if u, v ∈ D, where D is a minimal fuzzy dominating set in G or u ∈ V and v is a 
minimal fuzzy dominating set of G containing u. 

The fuzzy entire dominating graph FEd(G) of a fuzzy graph G is the fuzzy graph 
with a nonempty set V ∪ S and for any two nodes u, v in V ∪ S, (u, v) is a strong arc if u, 
v ∈ D, where D is a minimal fuzzy dominating set in G or u, v ∈ S and u ∩ v ≠ φ or u ∈ V 
and v is a minimal fuzzy dominating set of G containing u. 

We now define fuzzy entire dominating transformation graphs. 
Let G = (V, σ, µ) be a fuzzy graph. Let S be the set of all minimal fuzzy dominating 

sets of G. Let x, y, z be three variables each taking value + or –. The fuzzy entire 
dominating transformation graph Gxyz is the fuzzy graph with a nonempty set V ∪ S and 
for any two nodes u, v in V ∪ S, (u, v) is a strong arc if one of the following conditions 
holds: 

i) u, v ∈ V. x = + if u, v ∈ D where D is a minimal fuzzy dominating set of G.  
x = – if u, v ∉ D where D is a minimal fuzzy dominating set of G. 

ii)  u, v ∈ S. y = + if u ∩ v ≠ φ. y = – if u ∩ v = φ. 
iii)  u ∈ V and v ∈ S. z = + if u ∈ v. z = – if u ∉ v. 
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