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Abstract. The neighborhood graph N(G) of  a graph G = (V, E) is the graph with the 
vertex set V∪S where S is the set of all open neighborhood sets of G and with two 
vertices u, v ∈ V∪S adjacent if u ∈ V and v is an open neighborhood set containing u. In 
this paper, some properties of this new graph are obtained. A characterization is given for 
graphs G such that N(G) = G. Also characterizations are given for graphs (i) whose 
neighborhood graphs are connected (ii) whose neighborhood graphs are r-regular, (iii) 
whose neighborhood graphs are eulerian. 

Keywords: open neighborhood set, neighborhood graph, eulerian. 

AMS Mathematics Subject Classification (2010): 05C72 
 
1. Introduction 
All graphs considered in this paper are finite, undirected without loops or multiple edges. 
All definitions and notations not given here may be found in [1]. 

Let G = (V, E) be a graph with |V| = p vertices and |E|= q edges. For any vertex u 
∈ V, the open neighborhood of u is the set N(u) = {v ∈ V : uv ∈ E}. We call N(u) is the 
open neighborhood set of a vertex u of G. Let V = {u1, u2, …, up} and let S = {N(u1), 
N(u2), …,  N(up)} be the set of all open neighborhood sets of the vertices of G. 

A set D of vertices in a graph G is called a dominating set of G if every vertex in  
V – D is adjacent to some vertex in D. The domination number γ(G) is the minimum 
cardinality of a dominating set in G, see [2]. A dominating set D of G is minimal if for 
any vertex v ∈ D, D – {v} is not a dominating set of G. 

The dominating graph D(G) of a graph G is the graph with the vertex set V ∪ S1 
where S1 is the set of all minimal dominating sets of G and with two vertices u and v in 
D(G) adjacent if u ∈ V and v is a minimal dominating set in G containing u. This concept 
was introduced by Kulli et al in [3]. Several graph valued functions in graph theory were 
studied, for example, in [4, 5, 6, 7, 8, 9, 10, 11, 12,13, 14, 15, 16] and also several graph 
valued functions in domination theory were studied, for example, in [17, 18, 19, 20, 21, 
22, 23, 24, 25]. 

The following will be useful in the proof of our result. 
 
Theorem A [1, p.66]. A nontrivial graph is bipartite if and only if all its cycles are even. 
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In Section 2, we establish some properties of neighborhood graphs. 
Traversability of some graph valued functions was studied, for example, in [26, 

27, 28, 29]. In Section 3, we study traversability of neighborhood graphs. 
 
2. Neighborhood graphs 
The concept of the dominating graph inspires us to introduced the neighborhood graph of 
a graph. 
 
Definition 1. The neighborhood graph N(G) of a graph G = (V, E) is the graph with the 
vertex set V ∪ S where S is the set of all open neighborhood sets of G and with two 
vertices u and v in N(G) adjacent if u ∈ V and v is an open neighborhood set containing u. 
 
Example 2. In Figure 1, a graph G and its neighborhood graph N(G) are shown. For the 
graph G in Figure 1, the open neighborhood sets are N(1) = {2, 3, 4} , N(2) = {1, 3}, N(3) 
= {1, 2}, N(4) = {1}. 
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Figure 1: 
 

Remark 3. If u is an isolated vertex of a graph, then  N(u) is a null set. 
 
Theorem 4. For any graph G, N(G) is bipartite. 
Proof: By definition, no two vertices corresponding to vertices in N(G) are adjacent and 
no two vertices corresponding to open neighborhood sets in N(G) are adjacent. Hence 
N(G) has no odd cycles. Thus N(G) is bipartite. 
 
Remark 5. If v is a cut vertex of a graph G, then the corresponding vertices of v and N(v) 
are both cut vertices in N(G). 
 
Theorem 6. If  G is a (p, q) graph without isolated vertices, then the neighborhood graph 
N(G) of G has 2p vertices and 2q edges. 
Proof: Let G be a (p, q) graph without isolated vertices. Then for each vertex v of G, the 
neighborhood set N(v) exists. Therefore G has p open neighborhood sets. Since the vertex 
set of N(G) is the union of the set of vertices and the set of open neighborhood sets of G, 
it implies that N(G) has 2p vertices. 
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 In N(G), the corresponding vertex vi of the vertex vi of G contributes ( )id v∑  

edges and the corresponding vertex N(vi) of the open neighborhood set N(vi) of G 
contributes ( )( )id N v∑  edges. Clearly ( ) ( )( ) 2i id v d N v q= =∑ ∑ . Thus the number of 

edges in N(G) 

            ( ) ( )( )1
2

2 i id v d N v q = + = ∑ ∑ . 

 
Theorem 7. If T  is a tree with p≥2 vertices, then N(T) = 2T. 
Proof: Let T be a tree with p ≥ 2 vertices. We employ induction on p. One can verify that 
the result is true for p=2 or 3. This completes the first step of the induction. 
 We now assume the result is true for a tree T with p=k vertices. Then by 
induction N(T) = 2T. It implies that each component of N(T) is the tree T with p = k 
vertices and for any vertex v, NT(v) and v are in different components of N(T). Consider a 
tree T1 with k+1 vertices. Let u be a vertex of T1 and u ∉ T. In T1, the vertex u is adjacent 
with a vertex v of T. Now ( ) ( ) { }

1T TN v N v u= ∪  and ( ) { }
1

.TN u v=  In N(T1), ( )
1TN u  is 

adjacent with u in one component of N(T) and ( )
1TN u  is adjacent with v in another 

component of N(T), since ( )
1TN v  and v are in different components of N(T). Then each 

component of N(T1) is an acyclic and with k+1 vertices. Hence N(T1) = 2T1 and hence the 
result is true for a tree with k+1 vertices. 
 Hence the result follows. 
 
 The following results follow from Theorem 7. 
 
Corollary 8. For any path Pp with p≥2 vertices, 

N(Pp) = 2Pp. 
 
Corollary 9. For any star K1,p with p≥1 vertices, 

N(K1,p) = 2K1, p. 
 
Corollary 10. For a graph mK2 with m≥1, 

N(mK2) = 2mK2. 
 
Theorem 11. For a cycle Cp with p≥3 vertices, 
   N(Cp)  = 2Cp, if p is even, 
    = C2p, if p is odd. 
Proof: Let V(Cp) = {u1, u2,…,up}, p≥3. Let N(ui) = Xi, 1≤i≤p. Then V(N(Cp)) = {u1, 
u2,…,up, X1, X2,…, Xp}. 
Consider 
 X1 = N(u1) = {u2, up} 
 X2 = N(u2) = {u1, u3} 
 X3 = N(u3) = {u2, u4} 
 : : : 
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 . . . 
 Xp-1 = N(up-1) = {up-2, up} 
 Xp  = N(up) = {up-1, u1}. 
 
 In N(Cp), no two corresponding vertices of u1, u2, …, up are adjacent and no two 
corresponding vertices of X1, X2, …, Xp are adjacent. The adjacencies of the vertices in 
N(Cp) are 
 X1 is adjacent with u2 and up. 
 X2 is adjacent with u3 and u1. 
 X3 is adjacent with u4 and u2. 
 : : : 
 . . .  
 Xp-1 is adjacent with up-2 and up 
 Xp is adjacent with up-1 and u1. 
 
Case 1. Suppose p is even. Then the adjacency of the vertices of N(Cp) is given below. 
 X1 u2 X3 u4 … Xp-1 up X1 
and X2 u3 X4 u5 ... Xp up-1 X2. 
 Since p is even, X1 u2 X3 u4 ... Xp-1 up X1 is a cycle with p vertices and X2 u3 X4 u5 
... Xp up-1X2 is also a cycle with p vertices and they are disjoint. Hence N(Cp) = 2Cp. 
 
Care 2. Suppose p is odd. Then the adjacency of the vertices of N(Cp) is u1 X2 u3 X4 u5 … 
upX1 u2 X3 u4… Xp u1, which is a cycle with 2p vertices. Hence N(Cp) = C2p. 
Therefore N(Cp) = 2 Cp, if p is even, 

= C2p, if p is odd. 
 
Theorem 12. For any complete bipartite graph Km,n, 1 ≤ m ≤ n, N(Km,n) = 2 Km, n. 
Proof: Let Km, n be complete bipartite 1 ≤ m ≤ n. Let V(Km,n) = V1 ∪ V2, where V1 = {u1, 
u2, ..., um} and V2 = {v1, v2, …, vn}. Then Xi = N(ui) = {v1, v2,..., vn}, 1≤i≤n and Yj = N(vj) 
= {u1, u2,…, um}, 1 ≤ j ≤ m. In N(Km,n), each vertex N(ui) is adjacent with the vertices v1, 
v2,…, vn and each vertex N(vj) is adjacent with the vertices u1, u2,…, um. Thus the graph 
with the vertex set {v1, v2,…, vn, N(u1), N(u2), …, N(um)} is a complete bipartite graph Km, 

n and the graph with the vertex set {u1, u2,…, um, N(v1), N(v2) , …, N(vn)} is a complete 
bipartite graph Km, n. Since Xi ∩ Yj = φ, N(Km, n) = 2Km, n. 
 
Corollary 13. The neighborhood graph N(G) of a bipartite graph G is disconnected. 
 
Theorem 14. N(G) = G if and only if pG K= . 

Proof: Suppose pG K= . It is known that the open neighborhood set of an isolated vertex 

is a null set. Clearly ( ) pN G K= . Hence N(G) = G. 

 Conversely suppose N(G) = G. We now prove that pG K= . That is, we prove 
that each component of G is an isolated vertex. Assume there exists a component in G 
which has an edge, say e = uv. Then N(u) and N(v) are nonempty open neighborhood sets 
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of vertices u and v respectively. Thus the number of vertices of G is less than the number 
of vertices of N(G). Hence N(G) ≠ G, which is a contradiction. Thus each component of 
G is an isolated vertex. Therefore G = pK . 
 
Lemma 15. If v is an end vertex of G, then the corresponding vertices of v and N(v) are 
end vertices in N(G). 
Proof: Let v be an end vertex of G. Then v is adjacent with exactly one vertex of G, say 
u. Then N(v) = {u} and N(u) = {v, v1,…, vk}, k≥1 and v is not in any other open 
neighborhood set in G. Thus N(v) is adjacent with exactly one vertex u in N(G) and also v 
is adjacent with exactly only vertex N(v) in N(G). Thus v and N(v) are  endvertices in 
N(G). 
 
Theorem 16. Let G be a connected graph. Then N(G) is complete if and only G is K1. 
Proof: Suppose G = K1. Then N(G) = K1 and hence N(G) is complete. 
 Conversely suppose N(G) is complete. We now prove that G = K1. Assume 
G≠K1. Let G be a connected graph with p ≥ 2 vertices. For a vertex v of G, deg v ≤ p – 1 
= ∆(G). Therefore v lies in at most ∆ (G) open neighborhood sets of vertices of G. Thus 
deg v in N(G) is at most p – 1. Let N(u) be an open neighborhood set of a vertex u of G. 
Thus degN(u) in N(G) is at most p – 1. Hence the degree of each vertex of N(G) is at 
most p – 1. By Theorem 6, N(G) has 2p vertices. Also we have p – 1 ≠ 2p – 1, p≥2. Thus 
N(G) is not complete, which is a contradiction. Hence G has not more than one vertex.  
Thus G = K1. 
 
Corollary 17. If G is a nontrivial connected graph, then N(G) is not complete. 
 
Theorem 18. Let G be a connected graph. The neighborhood graph N(G) of G is 
connected if and only if G contains an odd cycle. 
Proof: Let G be a connected graph. Suppose N(G) is connected. We now prove that G 
contains an odd cycle. We consider the following cases. 
 
Case 1. Suppose G contains only even cycles. Then G is bipartite. By Corollary 13, N(G) 
is disconnected, which is a contradiction. 
 
Case 2. Suppose G has no cycles. Then G is a tree and it is bipartite. By Corollary 13, 
N(G) is disconnected, a contradiction. 
 By Case 1 and Case 2, we conclude that G contains an odd cycle.  

Conversely suppose a connected graph G contains an odd cycle. We prove that 
N(G) is connected. We consider the following cases. 
 
Case 1. Suppose G is itself an odd cycle. By Theorem 11, N(G) is a cycle. Then N(G) is 
connected. 
 
Case 2. Suppose G has an odd cycle. Let Ck = {u1, u2,…, uk} where k is odd. By Theorem 
11, N(Ck) is a cycle. Let V(G)= {u1, u2,…, uk, uk+1, ..., up}. Then there exists at least one 
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edge uk uk+1 in G such that uk uk+1 … up is a path. We see that the adjacency of the vertices 
in N(G) is as follows. 
 u1 X2 u3 X4 u5 ... uk X1 u2 X3 u4 ... Xku1, 
 Xk uk+1 Xk+2 uk+3 ... and so on, 
and uk Xk+1 uk+2 Xk+3 uk+4 ... and so on. 
Therefore any two vertices of N(G) are connected by a path. Thus N(G) is connected. 
 
Case 3. Suppose G has an odd cycle and it is a connected graph which is not considered 
in Case 1 and Case 2. Then one can see that N(G) is connected. 
 From the above cases, we conclude that for any connected graph having an odd 
cycle, N(G) is connected. 
 
 We characterize neighborhood graphs which are regular. 
 
Theorem 19. A graph G is r-regular if and only if N(G) is r - regular. 
Proof: Suppose G is 0-regular. Then G= pK . By Theorem 14, ( ) pN G K= if and only if  

G= pK . Hence G is 0-regular if and only if N(G) is 0-regular. 
Suppose G is r-regular, r ≥ 1. Let V(G) = [v1, v2,…, vp}. Then deg vi = r and N(vi) 

contains r vertices for 1 ≤ i ≤ p. Thus in N(G), deg vi = deg N(vi) = r. Hence N(G) is r-
regular.  

Conversely suppose N(G) is r-regular. Then the degree of each vertex of N(G) is 
r. Thus deg vi = deg N(vi) = r. Hence the degree of each vertex of G is r. Therefore G is r-
regular. 
 
3. Traversability 

We need the following result. 
Theorem B [1,p.76]. A connected graph G is eulerian if and only if every vertex of G has 
even degree. 
 
Remark 20. If  G is eulerian, then N(G) need not be eulerian. For example, for the 
eulerian graph C4, the neighborhood graph N(C4) is 2C4, which is not eulerian. 
 
 We characterize neighborhood graphs which are eulerian. 
 
Theorem 21. Let G be a nontrivial connected graph. The neighborhood graph N(G) of G 
is eulerian if and only if the following conditions hold: 

(1) G has an odd cycle, and 
(2) G is eulerian. 

Proof: Suppose N(G) is eulerian. On the contrary, suppose condition (1) is not satisfied. 
Then G has only even cycles or no cycles. By Theorem 18, N(G) is not connected. Hence 
N(G) is not eulerian, which is a  contradiction. This proves (1). Now suppose (2) is not 
satisfied. Then G has a vertex v of odd degree. Therefore v lies on odd number of open 
neighborhood sets in G. Hence the degree of v in N(G) is odd. Thus by Theorem B N(G) 
is not eulerian, which is a contradiction. This proves (2). 
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 Conversely suppose the given conditions are satisfied. Suppose G has an odd 
cycle. Then by Theorem 18, N(G) is connected. Suppose G is eulerian. By Theorem B, 
the degree of each vertex of G is even. Then the corresponding vertices of G and the 
corresponding vertices of open neighborhood sets of G in N(G) are even. Thus by 
Theorem B, N(G) is eulerian. 
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