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Abstract. The neighborhood grapR(G) of a graphG = (V, E) is the graph with the
vertex setVS where S is the set of all open neighborhood setsGofind with two
verticesu, v VOSadjacent ifu O V andv is an open neighborhood set containindgn
this paper, some properties of this new graph btaimed. A characterization is given for
graphsG such thatN(G) = G. Also characterizations are given for graphs (i) s€o
neighborhood graphs are connected (ii) whose neitjidod graphs areregular, (iii)
whose neighborhood graphs are eulerian.
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1. Introduction
All graphs considered in this paper are finite, iteated without loops or multiple edges.
All definitions and notations not given here mayfduend in [1].

Let G = (V, B) be a graph withv] =p vertices andg|= g edges. For any vertex
OV, the open neighborhood dfis the seN(u) = {v O V : uvO E}. We call N(u) is the
open neighborhood set of a vert@of G. Let V = {u;, Uy, ..., U} and letS= {N(u,),
N(up), ..., N(uy)} be the set of all open neighborhood sets ofvéirtices ofG.

A setD of vertices in a grapl® is called a dominating set & if every vertex in
V — Dis adjacent to some vertex ih The domination numbel(G) is the minimum
cardinality of a dominating set i@, see [2]. A dominating s& of G is minimal if for
any vertexv [0 D, D — {v} is not a dominating set d@&.

The dominating grapB®(G) of a graphG is the graph with the vertex sétd S
where§, is the set of all minimal dominating sets®@fand with two verticesi andv in
D(G) adjacent ifu 0 V andv is a minimal dominating set i@ containing u. This concept
was introduced by Kulli et al in [3]. Several graygdued functions in graph theory were
studied, for example, in [4, 5, 6, 7, 8, 9, 10, 12,13, 14, 15, 16] and also several graph
valued functions in domination theory were studied,example, in [17, 18, 19, 20, 21,
22, 23, 24, 25].

The following will be useful in the proof of ourgelt.

Theorem A [1, p.66]. A nontrivial graph is bipartite if and only iflads cycles are even.
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In Section 2, we establish some properties of mmidiood graphs.
Traversability of some graph valued functions waslied, for example, in [26,
27, 28, 29]. In Section 3, we study traversabiityneighborhood graphs.

2. Neighbor hood graphs
The concept of the dominating graph inspires usttoduced the neighborhood graph of
a graph.

Definition 1. The neighborhood grap(G) of a graphG = (V, E) is the graph with the
vertex setV O SwhereSis the set of all open neighborhood setscoéand with two
verticesu andvin N(G) adjacent iu 0 V andv is an open neighborhood set containing

Example 2. In Figure 1, a grapks and its neighborhood grapt(G) are shown. For the
graphGin Figure 1, the open neighborhood setsN(fi® = {2, 3, 4} ,N(2) = {1, 3}, N(3)

={1, 2}, N(4) = {1}.
4 {1}
{1, 2 1, 3}
y 3
2, 3,4}
2 3 .

G NG)
Figure 1.

Remark 3. If uis an isolated vertex of a graph, thiiu) is a null set.

Theorem 4. For any grapl®, N(G) is bipartite.
Proof: By definition, no two vertices corresponding tatiees inN(G) are adjacent and
no two vertices corresponding to open neighborhestd inN(G) are adjacent. Hence
N(G) has no odd cycles. ThO¥G) is bipartite.

Remark 5. If vis a cut vertex of a graph G, then the correspandgartices ofr andN(v)
are both cut vertices IN(G).

Theorem 6. If Gis a @, g graph without isolated vertices, then the neighbod graph
N(G) of G has 9 vertices and @edges.
Proof: Let G be a p, g graph without isolated vertices. Then for eachiesev of G, the
neighborhood setl(v) exists. Therefor& hasp open neighborhood sets. Since the vertex
set ofN(G) is the union of the set of vertices and the §&pen neighborhood sets Gf
it implies thatN(G) has 2 vertices.

94



In N(G), the corresponding vertex of the vertexy; of G contributes d(v)
edges and the corresponding verfdf;) of the open neighborhood sB{v) of G
contributes > d(N(y)) edges. Clearly> d(v)=>"d(N(y))=2c. Thus the number of

edges iMN(G)

= [ d(w)+ X d(N(v))]=2a

Theorem 7. If T is a tree withp=2 vertices, theiN(T) = 2T.
Proof: Let T be a tree withp = 2 vertices. We employ induction gnOne can verify that
the result is true fgp=2 or 3. This completes the first step of the irdurc

We now assume the result is true for a tiesvith p=k vertices. Then by
induction N(T) = 2T. It implies that each component N{T) is the treeT with p = k
vertices and for any vertex N+(v) andv are in different components B{T). Consider a
tree T, with k+1 vertices. Letibe a vertex o, andud T.In Ty, the vertexu is adjacent

with a vertexv of T. Now N; (v)=N;(vO{¢ and N, (u)={\}. In N(Ty), N; (u) is
adjacent withu in one component oN(T) and N, (u) is adjacent withv in another

component ofN(T), since N, (v) andv are in different components di(T). Then each

component oN(T,) is an acyclic and witk+1 vertices. HencBI(T;) = 2T; and hence the
result is true for a tree with+1 vertices.
Hence the result follows.

The following results follow from Theorem 7.

Corollary 8. For any patlP, with p=2 vertices,
N(Pp) = 2P,

Corollary 9. For any staK, , with p=1 vertices,
N(Kl,p) = Z<l,p'

Coroallary 10. For a grapmK, with m>1,
N(MKy) = 2mK,.

Theorem 11. For a cycleC, with p=3 vertices,
N(C,) =2C, if pis even,
=C,y, if pis odd.

Proof: Let V(Cp) = {us, Wp,...,us}, p=3. Let N(u) = X, 1<i<p. Then V(N(Cp)) = {u,
Up,...,Up, X1, Xa,..., Xp}.
Consider

X1 =N(u) = {up, up}

Xz = N(uz) = {uy, us}

X3 = N(us) = {up, us}
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Xp1 = N(Up1) = {Up, g}
Xp =N(Up) = {Up1, Ua}.

In N(C,), no two corresponding vertices wf uy, ..., u, are adjacent and no two
corresponding vertices of;, X, ..., X, are adjacent. The adjacencies of the vertices in
N(C,) are

X, is adjacent withu, anduy,.

X, is adjacent withuz andu;.

X3 is adjacent withu, andu,.

Xy is adjacent withu,, andu,
X is adjacent withu,, andu;.

Case 1. Suppos® is even. Then the adjacency of the verticeN(@}) is given below.
X1 Up X3 Ug ... Xpq Up Xy
and Xy U3 X4 Us ... Xp Ug g Xo.
Sincep is evenX; U, X3 Uy ... Xp1 Uy Xq IS @ cycle withp vertices andK; us X4 Us
... Xp U1 Xz is also a cycle witlp vertices and they are disjoint. He,) = 2C,.

Care 2. Suppos® is odd. Then the adjacency of the verticeBl(@,) iS u; X, us X4 Us ...
UpX1 Up X3 Us... Xp Uy, Which is a cycle with 2vertices. Henc®l(Cp) = Cy,.
ThereforeN(C,)= 2C,, if pis even,

= Cy, if pis odd.

Theorem 12. For any complete bipartite graplh, 1<m<n, N(Knn) = 2K

Proof: Let K., ,be complete bipartite 4 m< n. Let V(K,,,) = V. O V,, whereV; = {u,,
Up, ..., Ut @Nd Vo = {Vy, Vo, ..., Vo}. ThenXi = N(u) = {vq, V,,..., Vo}, 1<isn andY; = N(v))
= {Uy, Up,..., U}, L <j <m. In N(K, ), each verteN(u) is adjacent with the vertices,
V,,..., Vn @and each verteX(v) is adjacent with the vertices, U,,..., u,. Thus the graph
with the vertex set\, v,,..., Vo, N(Ug), N(Up), ..., N(u)} is a complete bipartite gragk,

» and the graph with the vertex sek{u,,..., Un, N(v1), N(V2) , ..., N(v,)} is a complete
bipartite grapim, » SinceXin Y; =@, N(Kn, ) = K, n

Corollary 13. The neighborhood grapt(G) of a bipartite grapks is disconnected.

Theorem 14. N(G) = Gif and only if G = K.
Proof: SupposeG = K, . It is known that the open neighborhood set ofsatated vertex
is a null set. ClearlN (G) = K, . HenceN(G) =G.

Conversely supposd(G) = G. We now prove that =K,. That is, we prove
that each component @ is an isolated vertex. Assume there exists a commoin G
which has an edge, say= uv. ThenN(u) andN(v) are nhonempty open neighborhood sets
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of verticesu andv respectively. Thus the number of vertice<zaf less than the number
of vertices ofN(G). HenceN(G) # G, which is a contradiction. Thus each component of
Gis an isolated vertex. TherefoB= K.

Lemma 15. If vis an end vertex dB, then the corresponding verticesvadndN(v) are
end vertices ilN(G).

Proof: Let v be an end vertex @b. Thenv is adjacent with exactly one vertex ®f say
u. ThenN(v) = {u} and N(u) = {v, v4,..., W}, k=1 andv is not in any other open
neighborhood set iG. ThusN(V) is adjacent with exactly one vertaxn N(G) and alsor
is adjacent with exactly only verté(v) in N(G). Thusv andN(v) are endvertices in
N(G).

Theorem 16. Let G be a connected graph. ThE(G) is complete if and onl is K.
Proof: Supposés = K;. ThenN(G) =K; and henc®&l(G) is complete.

Conversely supposBI(G) is complete. We now prove th& = K;. Assume
G#K;. Let G be a connected graph wiphe 2 vertices. For a vertexof G, degv<sp —1
= A(G). Thereforev lies in at mostA (G) open neighborhood sets of vertices of G. Thus
degvin N(G) is at mosp — 1. LetN(u) be an open neighborhood set of a vertaxt G.
Thus degjl(u) in N(G) is at mostp — 1. Hence the degree of each verteN@B) is at
mostp — 1. By Theorem @\(G) has 9 vertices. Also we have— 1# 2p — 1,p=2. Thus
N(G) is not complete, which is a contradiction. Hei&&as not more than one vertex.
ThusG = Kl.

Corollary 17. If Gis a nontrivial connected graph, the(G) is not complete.

Theorem 18. Let G be a connected graph. The neighborhood grd(fB) of G is
connected if and only i& contains an odd cycle.

Proof: Let G be a connected graph. Supp®¥&) is connected. We now prove that
contains an odd cycle. We consider the followingesa

Case 1. Supposés contains only even cycles. Thénis bipartite. By Corollary 13N(G)
is disconnected, which is a contradiction.

Case 2. SupposeG has no cycles. The® is a tree and it is bipartite. By Corollary 13,
N(G) is disconnected, a contradiction.

By Case 1 and Case 2, we conclude Ghabntains an odd cycle.

Conversely suppose a connected gr&ptontains an odd cycle. We prove that
N(G) is connected. We consider the following cases.

Case 1. Supposés is itself an odd cycle. By Theorem IN(G) is a cycle. TheiN(G) is
connected.

Case 2. Supposés has an odd cycle. L€k = {uy, U,,..., u} wherek is odd. By Theorem
11,N(Cy) is a cycle. LeV(G)= {uy, Uy,..., U U1, ..., Up}. Then there exists at least one
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edgeuy U1 in G such thaty us ... Uy is a path. We see that the adjacency of the ‘esrtic
in N(G) is as follows.
Uz X5 Uz X4 Us ... U X1 Up X3Uyz ... XUy,
Xi Us1 Xia2 Ukss ... and so on,
and  Ug X1 Uiz Xisz Ugea ... and SO oN.
Therefore any two vertices bfG) are connected by a path. THIE) is connected.

Case 3. Supposés has an odd cycle and it is a connected graph whkiabt considered
in Case 1 and Case 2. Then one can se&{f@tis connected.

From the above cases, we conclude that for angemiad graph having an odd
cycle,N(G) is connected.

We characterize neighborhood graphs which ardaegu

Theorem 19. A graphGisr-regular if and only iN(G) isr - regular.
Proof: Supposés is O-regular. Thet®= K,. By Theorem 14N (G) = K,if and only if

G= K,. HenceG is O-regular if and only iN(G) is O-regular.

Supposes is r-regular,r = 1. LetV(G) = [y, Vy,..., Vp}. Then degv; =r andN(v;)
containsr vertices for 1< i < p. Thus inN(G), degv; = degN(v;)) =r. HenceN(G) is r-
regular.

Conversely suppode(G) is r-regular. Then the degree of each verteN@) is
r. Thus deg; = degN(v;) =r. Hence the degree of each vertexzaé r. ThereforeGis r-
regular.

3. Traversability

We need the following result.

Theorem B [1,p.76]. A connected grap is eulerian if and only if every vertex Gfhas
even degree.

Remark 20. If G is eulerian, therN(G) need not be eulerian. For example, for the
eulerian graplt,, the neighborhood grapt(C,) is 2C,, which is not eulerian.

We characterize neighborhood graphs which areianle

Theorem 21. Let G be a nontrivial connected graph. The neighborhaag@igN(G) of G
is eulerian if and only if the following conditioh®ld:

(1) G has an odd cycle, and

(2) Gis eulerian.
Proof: SupposeN(G) is eulerian. On the contrary, suppose conditignig not satisfied.
ThenG has only even cycles or no cycles. By TheorenN[&) is not connected. Hence
N(G) is not eulerian, which is a contradiction. Thi®ves (1). Now suppose (2) is not
satisfied. TherG has a vertex of odd degree. Thereforelies on odd number of open
neighborhood sets iB. Hence the degree @fin N(G) is odd. Thus by Theorem B(G)
is not eulerian, which is a contradiction. Thisy@e (2).
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Conversely suppose the given conditions are satisBupposes has an odd
cycle. Then by Theorem 18|(G) is connected. Suppos$gis eulerian. By Theorem B,
the degree of each vertex @fis even. Then the corresponding verticesGoand the
corresponding vertices of open neighborhood set& dh N(G) are even. Thus by
Theorem BN(G) is eulerian.
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