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Abstract. We study an M/G/1 queueing system with Bernoulli feedback and with second 
optional service and second optional vacation. Customers arrive singly and are served 
one by one according to FCFS rule. The service time follows general distribution. All 
arriving customers are provided first essential service, where as only some of them 
demand second service which is optional. After the completion of first or second service, 
if the customer is dissatisfied with service he can immediately join the tail of the queue as 
a feedback customer for receiving another regular service. Otherwise the customer may 
depart forever from the system. Soon after the system is empty the server takes a vacation 
and after returning from vacation the server may opt for second vacation based on a 
Bernoulli rule. Using supplementary variable technique, we derive the probability 
generating function for the number of customers in the system. Some performance 
measures are calculated. Some special cases and particular cases are discussed. A 
numerical study is also presented. 

Keywords: M/G/1 queue, first essential service, second optional service, Bernoulli 
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1. Introduction 
Many authors have contributed to the study of Bernoulli Feedback queueing system. For 
detailed study one may refer to Disney et al. [5], Choudhury and Paul [3]. Some notable 
authors who contributed to M/G/1 type queue with second optional service are Madan  
[9], Medhi  [11], Krishnakumar et al. [7], Choudhury [2], and Thillaigovindan et al. [13]. 
Vacation models under various service disciplines have been investigated by Madan  [8], 
Choudhury  [1], Kalyanaraman and Murugan [6] and Thangaraj and Vanitha  [12]. A 
study on M/G/1 type queueing system with optional second vacation have been carried 
out by Choudhury  [4], Manoharan and Sasi  [10]. In this paper we consider an M/G/1 
feedback queueing system with second optional service and second optional vacation. 
The motivation for this type of model comes from some digital communication system 
where the server may require two types of vacations (i) regular vacation, for usual 
overhauling and maintenance of the system (ii) optional vacation may be necessary for 
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correcting a major fault when the system is not in proper working condition. The 
organization of the paper is as follows. In section 2 the model is described. In section 3 
the probability generating function for the number of customers in the system is derived. 
In section 4 some performance measures are calculated. In section 5 particular cases are 
discussed. In section 6 special cases are discussed and in section 7 a numerical study is 
presented. A conclusion is given in the last section. 
 
2. The model  
The following assumptions briefly describe the mathematical model of our study. The 
arrival follows Poisson distribution with mean arrival rate λ (> 0). There is a single server 
who provides the first essential service (FES) to all arriving customers. The service time 
for FES follows a general distribution, with distribution function (x)B1 and density 

function (x).b1  
Immediately after the FES, the customer may opt with probability p for a second 

service which is optional (SOS), or he may leave the system with probability (1 − p), in 
which case another customer at the head of the queue (if any) is taken up for his FES. 
The service time for SOS is also assumed to be generally distributed. Let (x)B2  and 

(x)b
2

 respectively be the distribution function and the density function of the SOS times. 

Further it is assumed that (x)dxµ i  is the conditional probability of completion of the 

i th service given that the elapsed service time is x so that [ ](x)B1

(x)b
(x)dxµ

i

i
i

−
=  and 

therefore }{1,2i;exp((x)µ(x)b ) 
x

0
(t)dtiµii ∈= ∫− . 

We assume that the FES and SOS are mutually independent of each other. Let 

1,2,3}{i1),(k)E(B(s),B
k
i

*

i ∈≥ denote the LST and finite moments of two service times 
respectively. Thus the total service time required by the server to complete the service 
cycle which may be called as modified service period is given by  

    




−
=

+

p1yprobabilitwith

pyprobabilitwith
B

1

21

B

BB
    

After the completion of first or second service, if the customer is dissatisfied with the 
service received to him, he can immediately join the tail of the queue as a feedback 
customer for receiving another regular service with probability r. Otherwise he may 
depart forever from the system with probability (1 – r) .                            

Whenever the system becomes empty, the server goes for a first regular vacation 
(FRV) of random length

1V . Let (x)V1
and (x)v1

 respectively be the distribution function 
and density function of the first vacation times. 

At the end of FRV, the server may take the second optional vacation SOV with 
probability θ. Otherwise he remains in the system with probability θ)(1 − until a new 

customer arrives. Let (x)V2 and (x)v
2

 respectively be the distribution function and density 
function for the SOV times. 
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 Further it is assumed that (x)dxν
i

 is the conditional probability of the completion of 

the vacation given that the elapsed vacation time is x  so that 
(x)V1

(x)v
dx(x)ν

i

i
i

−
= and 

therefore ;

(t)dtν

e(x)ν(x)v

x

0
i

ii

∫−
=  1,2}.{i ∈  

It is also assumed that the vacation times 
1V  and 

2V are mutually independent of each 

other having LSTs (s)V
*

i and finite moments {1,2}i1),(k),E(V
k

i ∈≥ . Thus the total 
vacation time required to complete the vacation cycle, which may be called as modified 
vacation period is given by 

      



−

+
=

θ1yprobabilitwithV

θyprobabilitwithVV
V                                

1

21

 
 
3. Queue size distribution at a random epoch 
Here we first set up the steady state equations for the stationary queue size distribution by 
treating elapsed service time, FES time, SOS time, FRV time and SOV time as 
supplementary variables. Then we solve these equations and derive the PGF’s. Let N(t) 

be the queue size (including one being served, if any), (t)B
(0)

1 be the elapsed service time 

for FES, (t)B
(0)

2  be the elapsed service time for the SOS, (t)V
(0)

1  be the elapsed vacation 

time for the FRV, (t)V
(0)

2  be the elapsed vacation time  for the SOV at time t respectively. 
For further development of this model let us introduce the random variable Y (t) as 
follows. 

                        













=

ttimeatSOSgivingbusyisservertheif3

ttimeatFESgivingbusyisservertheif2

ttimeatSOVonisservertheif1

ttimeatFRVonisservertheif0

Y(t)  

The supplementary variables (t)B(t);V(t),V
(0)

1

(0)

2

(0)

1
, (t)B

(0)

2
 are introduced in order to 

obtain a bivariate Markov process { }0t(t);N(t); ≥∂ where 

                                       













=

=

=

=

=∂

3Y(t)if(t)B

2Y(t)if(t)B

1Y(t)if(t)V

0Y(t)if(t)V

(t)

(0)

2

(0)

1

(0)

2

(0)

1

 

We define the limiting probabilities as follows.    

{ } 0x0;n;dxx(t)Vx(t);V(t)n;N(t)Pr
t
lim(x)dxQ

(0)

1

(0)

1n1, >≥+≤<=∂=
∞→

=    

{ } 0x0;n;dxx(t)Vx(t);V(t)n;N(t)Pr
t
lim(x)dxQ

(0)

2

(0)

2n2, >≥+≤<=∂=
∞→

=     
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{ } 0x0;n;dxx(t)Bx(t);B(t)n;N(t)Pr
t
lim(x)dxP

(0)

1
(0)
1n1, >≥+≤<=∂=

∞→
=     

{ } 0x0;n;dxx(t)Bx(t);B(t)n;N(t)Pr
t
lim(x)dxP

(0)

2

(0)

2n2, >≥+≤<=∂=
∞→

=                                              

Further it is assumed that 1)(B0;(0)B
(0)

i

(0)

i =∞=  for 1,2}{i ∈ and 

1)(V0;(0)V
(0)

i

(0)

i =∞=  for  {1,2}i ∈  and are continuous at 0.x =  
By assuming that the system is in steady state condition the differential difference 
equations governing the system are obtained as                                      

(x)λP(x)(x))Pµ(λ(x)P
dx

d
11111 n,n,n, −=++ ,       0,x >       1n ≥                                          ( )1  

0,(x)(x))Pµ(λ(x)P
dx

d
1,011,0 =++                      0x >                                                         ( )2  

(x),,λP(x),(x))Pµ(λ(x)P
dx

d
12222 nnn, −=++      0,x >      1n ≥                                           ( )3  

0,(x)(x))Pµ(λ(x)P
dx

d
2,022,0 =++                     0x >                                                          ( )4                                                                                                                             

(x),,λQ(x),(x))Qν(λ(x),Q
dx

d
11111 nnn −=++    0,x >       1n ≥                                         ( )5  

0,(x)(x))Qν(λ(x)Q
dx

d
1,011,0 =++                    0x >                                                         ( )6  

(x),,λQ(x),(x))Qν(λ(x),Q
dx

d
12222 nnn −=++   0,x >       1n ≥                                         ( )7  

0,(x)(x))Qν(λ(x)Q
dx

d
2,022,0 =++                   0,x >                                                        ( )8  

∫−+∫−−=
∞∞

0
22,0

0
11,01,0 (x)dxµ(x)P)r1((x)dxµ(x)Pr)p)(1(1λQ  

                     (x)dx(x)νQ(x)dx(x)νQθ)(1 2
0

2,0
0

11,0 ∫+∫−+
∞∞

                                                    ( )9  

where 

( )∫=
∞

0
1,01,0 dxxQQ  

The boundary conditions are 

1,01,0 λQ(0)Q =                                                                                                        (10)  
0,(0),Q n1 =           1n ≥                                                                                          (11)   

∫=
∞

0
112 (x)dx,(x)ν,Qθ(0),Q nn                ( )120n ≥  

∫ ∫−−++∫−=
∞ ∞∞

0 0
11,122,0

0
11,01,0 (x)dx(x)µPp)r)(1(1(x)dx(x)µP(x)dx(x)µPp)(1r(0)P               
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( )13(x)dx(x)νQ(x)dx(x)νQθ)(1(x)dx(x)µPr)(1
0

22,11
0

1,1
0

22,1 ∫+∫−+∫−+
∞∞∞

∫ ∫ +−−++∫−=
∞ ∞∞

0 0
11122

0
111 (x)dx(x)µ,Pp)r)(1(1(x)dx(x)µ,P(x)dx(x)µ,Pp)(1r(0),P nnnn                   

(14)1n,(x)dx(x)ν,Q(x)dx(x)ν,Qθ)(1(x)dx(x)µ,Pr)(1
0

2121
0

11
0

12 nn2n ≥∫ ++∫ +−+∫ +−+
∞∞∞

(x)dx,(x)µ,Pp(0),P 1
0

12 nn ∫=
∞

          0n ≥                                                                     (15)                                                                                           

and the normalizing condition is 

1
i

(x)dxQ(x)dxP
0

2

101

2

10 n
ni,

n i
ni, =∑ ∑

=
∫+∑

=
∑
=
∫

∞ ∞∞

=

∞
                                                                      (16)  

Now let us define the following PGF’s 

(x);Pzz)(x,P ni,
n

n
i

0
∑
=

=
∞

          0,x ≥      1z ≤ ,     { }1,2i ∈                                         )17(  

(0);Pzz)(0,P ni,
n

n
i

0
∑
=

=
∞

          1z ≤ ,     {1,2}i ∈                                                       )18(  

(x);Qzz)(x,Q ni,
n

n
i

0
∑
=

=
∞

        0,x ≥      1z ≤ ,     }{ 21,i ∈                                        (19)  

);(Qzz),(Q 0ni,
n

n
0i

0
∑
=

=
∞

        1z ≤ ,     }{ 21,i ∈                                                      (20)  

∫=
∞

0

z)dx,(x,P(z)P ii          { 1,2}i ∈                                                                           (21)  

z)dx,(x,Q(z)Q
0

ii ∫=
∞

        }{1,2i ∈                                                                            )22(  

Multiplying (1) by nz  and summing over n=1 to ∞and adding with (2), we get 

0z)(x,P)(x)µλzλ(z)(x,P
dx

d
111 =+−+                                                                        

z)xλ(1e](x)B1[z)(0,Pz)(x,P 111

−−−=                                                                           (23)  

Multiplying (3) by nz  and summing over n=1 to ∞ and adding with (4), we get 

0z)(x,P)(x)µλzλ(z)(x,P
dx

d
222 =+−+                                                                                             

z)xλ(1(x)]eBz)[1(0,Pz)(x,P 222

−−−=                                                                          (24)  

Multiplying (5) by nz  and summing over n=1 to ∞ and adding with (6), we get 

0z)(x,Q)(x)νλzλ(z)(x,Q
dx

d
111 =+−+          

z)xλ(1e(x)]Vz)[1(0,Qz)(x,Q 111

−−−=                                                                         (25)                                                                 

Multiplying (7) by nz  and summing over n=1 to and adding with (8), we get 
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0z)(x,Q)(x)νλzλ(z)(x,Q
dx

d
222 =+−+          

z)xλ(1(x)]eVz)[1(0,Qz)(x,Q 222

−−−=                                                                        )26(  

Multiplying (14) by 1nz +  and summing over n=1 to ∞ and adding with z times (13), we 
get 

( ) ( ) (x)dxz)µ(x,P]z1r1[(x)dxz)µ(x,P]z1rp)[1(1z)(0,zP 2
0

21
0

11 ∫−−+∫−−−=
∞∞

 

                 1,02
0

21
0

1 λQ(x)dxz)ν(x,Q(x)dxz)ν(x,Qθ)(1 −∫+∫−+
∞∞

                                   )27(  

From equation (15), we get 

λz)(λz)B(0,pPz)(0,P *

112 −=                                                                                     )28(  
From equation (23), we get  

λz)(λz)B(0,P(x)dxz)µ(x,P *
111

0
1 −=∫

∞

                                                                          (29)  

From equation (24), we get  

λz)(λλz)B(λz)B(0,pP(x)dxz)µ(x,P *

2

*

112
0

2 −−=∫
∞

                                                         (30)  

From equation (25), we get  

λz)(λz)V(0,Q(x)dxz)ν(x,Q *

111
0

1 −=∫
∞

                                                                        (31)  

From equation (26), we get  

λz)(λλz)V(λz)V(0,Qθ(x)dxz)ν(x,Q *
2

*
112

0
2 −−=∫

∞

                                                       (32)  

From equation (11) and (12), we get  

1,01 Qλz)(0,Q =                                                                                                       )33(     
λz)(λz)V(0,Qθz)(0,Q *

112 −=                                                                                   (34)                
Using (28) to (34) in (27), we get 

( ){ }
1,0*

1
*
2

*

1

*

2
1 Q

]z)r(11[λz)(λBλz)](λpBp)[(1z

1λz)(λVλz)](λVθθ1[λ
z)(0,P 









−−−−+−−

−−−+−
=                                  (35)  

Using (35) in (28), we get { }
1,0*

1
*
2

*

1

*

1

*

2
2 Q

]z)r(11[λz)(λBλz)](λpBp)[(1z

λz)(λB1λz)(λV]λz)(λVθθ)1([pλ
z)(0,P 









−−−−+−−

−−−−+−
=                         (36)  

Integrating (23) to (26) between 0 and ∞, we get 

z)(0,P
λz)(λ

λz)(λB1
(z)P 1

*

1
1 









−

−−
=

                                                                                 
(37)  

z)(0,λz)P(λB
λz)(λ

λz)(λB1
p(z)P 1

*

1

*

2
2 −

−

−−
= 









                                                                
(38)  
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z)(0,Q
λz)(λ

λz)(λV1
(z)Q 1

*

1
1 









−

−−
=

                                                                               
(39)  

z)(0,Q
λz)(λ

λz)](λVλz)[1-(λθV
(z)Q 1

*
1

*
2

2 








−

−−
=

                                                             
(40)  

Using (35) in (37) and (38), we get
 

1.0*
1

*
2

*

1

*

1

*

2
1 Q

}]z)1(r1[λz)(λBλz)](λpBp)[(1z){z(1

)λz)(λB1(}1λz)(λV]λz)(λθVθ)(1[{
(z)P 









−−−−+−−−

−−−−−+−
=

                        

(41)
                                                                                                                                                                                                                                       { }

( ){ } ( )421.0*

1

*

2

*

1

*

2

*

1

*

2
2 Q

]z1r1[λz)(λBλz)](λpBp)[(1zz)(1

λz)(λB)λz)(λB1(1-λz)(λV]λz)(λθVθ)(1[
p(z)P 









−−−−+−−−

−−−−−+−
=                                                                                                                                

Using (33) in (39) and (40), we get
 

1,0

*

1
1 Q

)z1(

λz)(λV1
(z)Q 









−

−−
=                                                                                     (43)  

1,0

*

2

*

1
2 Q

)z1(

λz)](λVλz)[1(λθV
(z)Q 









−

−−−
=                                                                  (44) 

Using the fact that 1(1)Q(1)Q(1)P(1)P 2121 =+++  , we arrived 

[ ])θE(V)E(Vr)λ(1

ρ1
Q

21

1,0 +−

−
=                               (45) 

where  

)]pE(B)λ[E(Brρ 21 ++=                          ( )46  
and  ),E(B(0)B),E(B(0)B 2

*

21

*

1

''
−=−=  are the mean of service times of FES and  SOS time 

respectively,  )E(V(0)V 1

'*

1 −=  and )E(V(0)V 2

'*

2 −=  are the mean of vacation times of FRV 
and SOV respectively. Therefore  

D(Z)

N(Z)
P(z) =                                                                                                            ( )47  

where 

{ }{ } 1,0
*
1

*
2

*
1

*
2 Qλz)r(λB]λz)(λpBp)(1[11λz)(λVλz)](λθVθ)[(1N(z) −−+−−−−−+−=  

{ } ]z)r(11[λz)(λBλz)](λpBp)[(1zD(z) *

1

*

2 −−−−+−−=  
 
4. Performance measures  
Let qL and L  denote the steady state average queue size and system size respectively. 

Then
1z1z D(z)

N(z)

dz

d
P(z)

dz

d
qL

==














==   
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Using the L’Hospital rule twice we obtain 

2(1))'2(D

(1)''(1)D'N(1)''(1)N'D
L q

−
=                                                                                 )48(  

where 

1,021 r)Q))(1θE(V)λ(E(V(1)N' −+=  

{ } 1,0212121

2

2

2

1

2 Q))pE(B)))(E(BθE(V)2r(E(Vr))](1)E(VE(Vθ2)θE(V)[E(Vλ(1)N '' ++−−++−=

( ))pE(B)E(Bλr1(1)D 21

' +−−=  

{ } { }))E(B2pE(B)pE(B)E(Bλr)pE(B)E(B2λ(1)D 21

2

2

2

1

2

21

'' ++−+−=  

where )E(V),E(V),E(B),E(B
2

2

2

1

2

2

2

1  are second moment of FES, SOS, FRV and SOV time 

respectively. Next, we can obtain ρLL q += , where qL  and ρ  have been found in (48) 

and (46) respectively. Then using Little’s formulae, we obtain ,Wq the average waiting 

time in the queue and  W, the average waiting time in the system, as 
λ

L
W

q
q =  and 

λ

L
W = respectively. 

 
5. Particular cases  
Case 1: Setting r =0 ( no feedback ) in (47) , we get 

1,0

21

*

1

*

2

*

1

*

2 Q
)]θE(V)λ[E(V}λz)(λB]λz)(λpB)p1([z{

ρ)(1}1λz)(λV]λz)(λθVθ)(1{[
P(z)

+−−+−−

−−−−+−
=                                

which coincides with the  PGF of Manoharan [10] irrespective of the notations used . 
Case 2: Setting p=0 (no SOS) and r=0 (no feedback) in (47) we 

get 1,0

21

*

1

*

1

*

2 Q
])E(Vθ)E(V[λλz)}(λBz{

ρ)(1}1λz)(λV]λz)(λθVθ)(1[{
P(z)

+−−

−−−−+−
=                                                                

which coincides with the PGF of Choudhury [4] irrespective of the notations used. 
 
6. Special cases 
For validating our model it is important to analyze through specific distribution. By 
choosing some known distributions for service times and vacation times the validity of 
the system is examined in this section.  
Model-1: Let the distribution of service and vacation times be assumed as Exponential. 
Then equations (45), (46), (47), (48) and (49) become 

 

21

1221

µµ

)pµλ(µµrµ
ρ

++
=

)θνλ(νµr)µ(1

νν))pµλ(µr)(1µµ(
Q

1221

211221
1,0 +−

+−−
=
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( ) ( ) ( )
( ) 1,0

2112212

11121112 Q
)νλzλ)(νλzλ)}(z)r(11(µ]pµµλzλp)(1[)µλz)(λµλzz(λ{

}rµλzλp]]rµµλzλ[µλzλ[λz)νθ(λ)]νλzλ(ν)[νλzλ{(
P(z)

+−+−−−++−−−+−+−

−+−+−+−−−+−−+−
=

 

1,02
)1221(

2
2

2
1

21
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 Model-II: Let the service and vacation times be taken as Erlang distributions. Then 
equations (45), (46), (47), (48) and (49) become 
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7. Numerical results 
Assigning particular values to the parameters of the system as 0.02,p = 2.5,µ1 =  

1.5,µ2 =  0.05r0.3,θ1,ν2,ν 21 ====  and varying the value of λ  from 0.1 to 1 in steps 
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of 0.1 we calculated the values of Lq and Wq which are tabulated in Table-1 and the 
corresponding graphs are drawn for Model-I and Model-II in Figure 1 and Figure 2 
respectively. We observe that when λ  increases, there is a steady increase in Lq as well 
as in Wq for both Model-I and Model-II as can be expected. 
 

Table 1: 
λ  Model-I (Lq) Model-II (L q) Model-I (Wq) Model-II (Wq) 

0.1 0.089516 0.072952 0.895163 0.729519 

0.2 0.282463 0.229563 0.941543 0.765210 

0.3 0.499119 0.404420 0.998238 0.808840 

0.4 0.748385 0.604372 1.069122 0.863388 

0.5 1.044253 0.840186 1.160281 0.933540 

0.6 1.410055 1.129817 1.281868 1.027107 

0.7 1.887819 1.505609 1.452169 1.158161 

0.8 2.561687 2.032311 1.707791 1.354874 

0.9 3.628291 2.861243 2.134289 1.683084 

1.0 5.679119 4.447581 2.989010 2.340832 
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Figure 1: Arrival rate versus Lq                    Figure 2: Arrival rate versus Wq 

 

Again assigning particular values as 2,λ = 8,µ1 = 5,µ 2 = 5,ν1 =  7,ν 2 = 0.2r0.4,θ ==  
and varying the value of p from 0.1 to 1 in steps of 0.1 we calculated the values of Lq and 
Wq which are tabulated in Table-2 and the corresponding graphs are drawn for Model-I 
and Model-II in Figure 3 and Figure 4 respectively. We observe that when p increases, 
there is a steady increase in Lq as well as in Wq for both Model-I and Model-II as 
expected. 
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Table 2: 
P Model-I (Lq) Model-II (L q) Model-I (Wq) Model-II (Wq) 

0.1 0.678247 0.582366 0.339123 0.291183 
0.2 0.765035 0.662368 0.382517 0.331184 

0.3 0.869829 0.758184 0.434915 0.379092 

0.4 0.998172 0.874681 0.499086 0.437341 
0.5 1.158135 1.018948 0.579068 0.509474 

0.6 1.369160 1.201736 0.680980 0.600868 
0.7 1.629140 1.440166 0.814570 0.720083 

0.8 1.992731 1.763265 0.996366 0.881633 
0.9 2.513624 2.224513 1.256812 1.112256 
1.0 3.317661 2.934426 1.658830 1.467213 
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Figure 3:   (probability of SOS) versus                  Figure 4:  (probability of SOS) versus  

 
Taking the values of the parameters of as λ=2, p = 0.2, 1µ  =9, 2µ  =8, 1ν  =4, 

2ν =2, r =0.5 and varying the value of θ  from 0.1 to 1 in steps of 0.1 we calculated the 
values of Lq and Wq which are tabulated in Table-3 and the corresponding graphs are 
drawn for Model-I and Model-II in Figure 5 and Figure 6 respectively. We observe that 
when θ increases, there is a steady increase in Lq and Wq for both Model-I and Model-II 
as can be expected.     
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Table 3: 
θ  Model-I (Lq) Model-II (L q) Model-I (Wq) Model-II (wq) 
0.1 1.312466 1.234824 0.656233 0.617412 
0.2 1.431514 1.338990 0.715757 0.669495 
0.3 1.520799 1.417115 0.760400 0.708558 
0.4 1.590799 1.477879 0.795122 0.738940 
0.5 1.645800 1.526490 0.822900 0.763245 
0.6 1.691254 1.566263 0.845627 0.783132 
0.7 1.729133 1.599407 0.864566 0.799704 
0.8 1.761184 1.627452 0.880592 0.813726 
0.9 1.788657 1.651491 0.894328 0.825745 
1.0 1.812466 1.672324 0.906233 0.836162 
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     Figure 5:   (probability of SOV) versus           Figure 6:   (probability of SOV) versus  
 
8. Conclusion 
The analysis carried out in “An M/G/1 feedback Queueing system with second optional 
service and with second optional vacation” is to obtain the probability generating 
function for the number of customers in the system and also to obtain waiting time of a 
customer in the system. Numerical work is carried out to study the effect of some 
parameters on the operating characteristics of the system. 
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