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Abstract. We study an M/G/1 queueing system with Bernoulidieack and with second
optional service and second optional vacation. @usts arrive singly and are served
one by one according to FCFS rule. The service follews general distribution. All
arriving customers are provided first essentiaviser where as only some of them
demand second service which is optional. Afteratrapletion of first or second service,
if the customer is dissatisfied with service he tamediately join the tail of the queue as
a feedback customer for receiving another reguwdarice. Otherwise the customer may
depart forever from the system. Soon after theegyss empty the server takes a vacation
and after returning from vacation the server may fop second vacation based on a
Bernoulli rule. Using supplementary variable tecjus, we derive the probability
generating function for the number of customersthia system. Some performance
measures are calculated. Some special cases atidulparcases are discussed. A
numerical study is also presented.

Keywords. M/G/1 queue, first essential service, second optioservice, Bernoulli
feedback, regular vacation, second optional vagasiteady state solution.
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1. Introduction

Many authors have contributed to the study of Belfn&eedback queueing system. For
detailed study one may refer to Disney et al. 8jpoudhury and Paul [3]. Some notable
authors who contributed to M/G/1 type queue withosel optional service are Madan
[9], Medhi [11], Krishnakumar et al. [7], ChoudlgJe], and Thillaigovindan et al. [13].
Vacation models under various service disciplinmgehbeen investigated by Madan [8],
Choudhury [1], Kalyanaraman and Murugan [6] andridaraj and Vanitha [12]. A
study on M/G/1 type queueing system with optioredosd vacation have been carried
out by Choudhury [4], Manoharan and Sasi [10]thHis paper we consider an M/G/1
feedback queueing system with second optional eerand second optional vacation.
The motivation for this type of model comes frommsodigital communication system
where the server may require two types of vacati@gnhsegular vacation, for usual
overhauling and maintenance of the system (ii)omati vacation may be necessary for
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correcting a major fault when the system is notpioper working condition. The
organization of the paper is as follows. In secfothe model is described. In section 3
the probability generating function for the numbércustomers in the system is derived.
In section 4 some performance measures are cadullt section 5 particular cases are
discussed. In section 6 special cases are discasskth section 7 a numerical study is
presented. A conclusion is given in the last sectio

2. The model

The following assumptions briefly describe the reatltical model of our study. The
arrival follows Poisson distribution with mean aali ratel (> 0). There is a single server
who provides the first essential service (FES)It@amiving customers. The service time

for FES follows a general distribution, with dibuition functionB,(x) and density
functionb, (x).

Immediately after the FES, the customer may oph wgitobability p for a second
service which is optional (SOS), or he may leawe distem with probability (1 - p), in
which case another customer at the head of theeq(ieany) is taken up for his FES.

The service time for SOS is also assumed to berginelistributed. Lets,(x) and
b,(x) respectively be the distribution function and deasity function of the SOS times.
Further it is assumed that (x)dx is the conditional probability of completion of the

b, (x)
[1-8,0]

th

i service given that the elapsed service time isoxttat y, (x)dx = and

thel’efOI‘(-:bi x) =p, (¥ exp(—Zpi (hdt) ; i0{1,2}.

We assume that the FES and SOS are mutually indeperof each other. Let

Bi*(s), E(Bik) (k21),i0{1,2,31denote the LST and finite moments of two servicees
respectively. Thus the total service time requibgdthe server to complete the service
cycle which may be called as modified service pkisogiven by

B = B, + B, with probabiliy p
B, with probabiliy 1-p

After the completion of first or second servicethié customer is dissatisfied with the
service received to him, he can immediately joia thil of the queue as a feedback
customer for receiving another regular service withbability r. Otherwise he may
depart forever from the system with probability(f) .

Whenever the system becomes empty, the serverfgoes first regular vacation
(FRV) of random length,. Let v (xy andv, (x) respectively be the distribution function
and density function of the first vacation times.

At the end of FRV, the server may take the secaptibimal vacation SOV with
probability 6. Otherwise he remains in the system with probgbili- e) until a new

customer arrives. Le¥, (x) andv,(x) respectively be the distribution function and digns
function for the SOV times.
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Further it is assumed that(x)dx is the conditional probability of the completioh o
v (X)

1-V,(x)

thei**vacation given that the elapsed vacation timi iso thaty, (x) dx = and

~[vi(tdt
thereforev, (x) = v, () e ° ;i0{1,2}.
It is also assumed that the vacation tinesind v,are mutually independent of each

other having LSTsvi*(s) and finite momentE(vik), (k=1), i0{1,2}. Thus the total

vacation time required to complete the vacatione;yewhich may be called as modified
vacation period is given by
{vl +V,, with probabiliy 0
V =
%

f with probabiliy 1-6

3. Queue size distribution at a random epoch

Here we first set up the steady state equationthéostationary queue size distribution by
treating elapsed service time, FES time, SOS tifFRY time and SOV time as
supplementary variables. Then we solve these emsatind derive the PGF’s. Let N(t)

be the queue size (including one being servedyj,&" () be the elapsed service time
for FES,BY (1) be the elapsed service time for the S©8,t) be the elapsed vacation

time for the FRV,v.” (t) be the elapsed vacation time for the SOV at tinespectively.

For further development of this model let us introel the random variable Y (t) as
follows.

0 if theserverisonFRV attimet

Y 1 if theserverisonSOVattimet
t) =
2 if theserveris busygiving FES attimet

3 if theserveris busygiving SOS attimet

The supplementary variables® ¢, v,” ®: 8,° ¢y , 8, are introduced in order to
obtain a bivariate Markov proce$s(t); a(); t > o} where

0) .
vV, @® i Y(®) =0
0) .
v, if Y@ =1
o = ©
B, (© if Y({t)=2

8, if Y(®=3
We define the limiting probabilities as follows.
Q,,, ()dx = fim_ Pr{ N = n;a(t) = V@ ):x <V, (1) < x +dx}; n>0; x>0

Q.. (Ydx = lim Pr{ N@) = n;a() = VOt x <V, () < x + dx}; n>0: x>0
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R 00dx = lim Pl{ N(t) = n;a(t) = BO(t):x < B,” (t) < x +dx}; n>0; x>0
P, (dx = lim_ Pr{ N@®) =n;a(t) = BY 1) x < B, () < x + dx}; n>0; x>0

Further it is assumed thaBi(o)(O):O;Bi(o)(oo):l for i0{1,2} and

Vi(o) 0)= O;Vi(o) () =1 for i0{1,2} and are continuous at=0.

By assuming that the system is in steady stateittondhe differential difference
equations governing the system are obtained as

di PnO)+ A+, 00)P (X)) =4 (x), x>0, n21 (1)

X

d

& Pl,o x)+A+ ],Ll(X))Pl‘O (x)=0, x>0 (2)

di Pz,n )+ + uz(x))szn x) = 7‘P2,n—1 (%), X >0, n>1 (3)
X

d

™ P,o() + (+1, (X)P,,4(x) =0, x>0 (a)

din,n (X) + O‘ + Vl(x))Qlyn (X) = le,n—l (X), X >0, n=1 (5)
X

d

&Ql,o(x) +(A+ Vl(X))Qlyo(X) =0, x>0 (6)

Q00+ 04 Va0 (9 =2Qu (0 x>0, 21 )
X

d

Q00+ (¥, (0)Qu04) =0 x>0, )
X

2Q, , = (1-p)(1- r)za,o(x) b, (x)dx+ (L r)ZPz,o(x) 1, (x)dlx

+(1-0)] Qo (X)v, 09dX+ ] Q, o (¥)v, (¥)dlx (o)
where
Qo= ZQl,o(x)dx

The boundary conditions are

Quo0=1Qs (10)
Ql,l"l (O) =0, n=1 (11)
Qz,n (0) = eTQl,n (X)Vl(X)dX, n=0 (12)

P,(0)= r(1- p)Z Py, ()1, (x)dx+ sz,o(x)uz (X)dx+ (1-)(1- p)l° Py, (1, (x)dx
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+ (1= D] P, (00w, ()dx+ (1= 0) [ Q, , (v, (X)dx+ [ Q, ,(<Iv,, (X)dx (13)
P (0)=r(1- p)?;Pl, 2 (0w, ()dx + IP 2 (0w, (X)dx + (1= 1)(1- p)zpl, 42 001, ()l

(1= 1) [Py, (5 00X + (1= 0)] Q, 143 00V, ()X + [Q, 14 (v, ()X, N 21 (14)

P (0)= pz B (08, (), n>0 (15)
and the normalizing condition is
S 3R (dx+ & 5 [Q(¥dx =1 (16)
n=ti=1p n=ol=10
Now let us define the following PGF's
P(x2)= X2"P  (X); x20, |z|<1, io{u3) 17)
n=o '
P(0,2)= 32"P . (0); 1z|<1, io{12} 18)
n=o '
Qi(x,2) = iz”Qin(x); xz0, |z|s1, iD{l,z} (19)
n=o '
Q(0,2) = ni;oaniyn(o); 1z|<1, i0{1,2} (20)
R(2)= TPi (x,2)dx, i0{ 1,2} (21)
0
Q@=[Qx2dx,  i0{13 22
0

Multiplying (1) by z" and summing over n=1 ®and adding with (2), we get
dipl(x,z)+ (A =2z+p,())R,(x,2)=0
X
P.(x,2) = P,(0,2)[1- B, (x) Je 2%
Multiplying (3) by z" and summing over n=1 ® and adding with (4), we get

(23)

diPz(x,z)+(k—)»z+p2(x))P2(x,z) =0
X

P,(x,2) = P,(0,2)[1- B, (x)]e -"9*
Multiplying (5) by z" and summing over n=1 ® and adding with (6), we get

di Q,(x,2)+ (A —Az+v,(X)Q,(x,2)=0
X

(24)

-M1-2)x

Ql(x! Z) = Ql(O,Z)[l— Vl(X)]e
Multiplying (7) by z" and summing over n=1 tz and adding with (8), we get

(25)
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OIin(x, 2)+(A-Az+v,(X)Q,(x,2)=0
X

-M1-2)x

Q,(x,2)=Q,(0,2)[1-V,(X)]e (26)

Multiplying (14) by 2™ and summing over n=1 t® and adding with z times (13), we
get

2R (0,2) = (1- p)[L- (L= 2)] ] P, (x, 2, ()dx+ [L - (1= 2)] [ P, (x, 2, (x)lx

+(1-0)]Q, (x, 2V, (dx+ [Q, (x,2v, (X~ 1Q @7)
0 0
From equation (15), we get
P,(0,2) = pR(0,2)B, (A - 12) (28)

From equation (23), we get
[P (x, 2, (9dx = R (0,2)B; (1 ~ 22) (29)
Igrom equation (24), we get
[P, (x, 2, (dx = PR (0.2)B; (. ~ 2B (1 - 12) (30)
Igrom equation (25), we get
19,02, 090X = Q, 0.2V, (=12 (31)

From equation (26), we get

1Q, (x,2)v, ()dx = 0Q, (0,2)V, (A - A2)V; (A ~12) 32)
0

From equation (11) and (12), we get

Q,(02)=2Q,, 33
Q,(0,2) =0Q,(0,2)V, (~—1z) (34)

Using (28) to (34) in (27), we get

(0.)= { W 1(-0) +0V; 0-32)1V, (.~32) ~1} } ) )
z-[(1-p)+pB,(A—A2)]B, (A —2z) [1-r(1-Z)] ’

Using (35) in (28), we get

0.0)= {pk{ [0-0) +0V, (=32)] Vl*(k—kz)—l} B, (- 22) } N a5)
z-[(A-p)+pB,(A-12)]B, (A —Az)[1-r(1-2)]

Integrating (23) to (26) between 0 andwe get

P ()= 1-B,(t~12) P (0.2) -

1 0 -12) 1Y (37)
{1— B, (A - xz)} )

P,(z)=p ———— [B,(A-22)R(0,2) (38)

A—-22)
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Q@)= ¢ o 2

1 0.-22) 1 (0, (39)

0.0 [ev2 (- A2)[1-V, (h - }“Z)]}Ql(o,z) o)
(A=22)

Using (35) in (37) and (38), we get
P (2)= {[(1-0)+6V,(AL-22)] V, (A —22)-1} 1B, (L —12)
S -2z -1 -p)+ B, (.- 22)] B, (.~ a2) [L- -2} } | T

(41)
{ [(1-6) +6V, L —AZ)] V, (A —22) -1}(1— B,(\—Az))B, (A —12)
Pz (Z) = N . 1.0 (42)
(1-2)z-[(1-p) + pB, (. - A2)]B, (.~ 22) [L-r(1- )]}
Using (33) in (39) and (40), we get

0.(2)= 1-V, (A -22) Q (43)
1 (1_2) 1,0
0V, (A —AZ)[1- V., (A -\
QZ(Z){ " -22)[1-V, ( z)]} ’ ”
-2
Using the fact that (1) + P, (1) + Q, (1) +Q,(1) =1 , we arrived
1-p

= 45
Quo A1-n[E(V,) +0E(V,)] (45)
where
p=r+A[E(B)+pE(B)] (46)

and B;I (0) = -E(B,). B, (0) = -E(B,), are the mean of service times of FES and SOS time

respectively, Vl*l (0)=-E(v,) and Vz*' (0) = -E(V,) are the mean of vacation times of FRV
and SOV respectively. Therefore

p)=22 (a7)
D)

where
N(z)= {[(1— 0) +0V, (L —22)]V, (A —22) —1}{1— [(1-p) +pB, (~ —A2)]B, (A - XZ)r}leo

D(2)={z-[(1-p)+ pB, (- 12)IB; (. - A2)} [L- r(1~ 2)]

4. Perfor mance measur es
Let L,andL denote the steady state average queue size aethsyige respectively.

ThenLq = [i P(z)} = {i@}
dz = L9z2D(@) ],

107



P.ManoharamndK.Sankara Sasi
Using the L'Hospital rule twice we obtain
_D (N (1)-N (1D (1)
200

q 49)

where

N ()= ME(S) +0E(,)(A-Q,

N (1)= —Kz{[E(Vlz) +0E(V;) +20 E(M)E(V,)](1-1) = 2r(E(Y) +0E(\,))(E(B) +PE(B)) } Qo

D (1)=1-r-(E(8) +PE®,))

D" (1) = -2{E®,) + e, }r -1*{E(B?) + pE(EE) + 2pE®)E, )}

where E(B?), E(B3), E(V,), E(V.) are second moment of FES, SOS, FRV and SOV time

respectively. Next, we can obtair- L, +p, whereL , andp have been found in (48)
and (46) respectively. Then using Little’s formylae obtainw,, the average waiting

L
time in the queue and W, the average waiting timeéhe system, asv, =— and
A

L .
W= ; respectively.

5. Particular cases
Case 1: Setting r =0 ( no feedback ) in (47) , we get

b= {{(1-0) +6V, L= A2)]V, (A -22) -1} (1-p)
{z-[@-p) +pB, (. —12) 1B, (A - Az)} A[E(V,) +OE(V,)]

which coincides with the PGF of Manoharan [10d$wective of the notations used .
Case 2: Setting p=0 (no SOS) and r=0 (no feedback) in &)

{ [(1-6) +6V, (A =22)] V, (A =12) -1} (1-p)
{z=B,(.=22)} L[ E(V,) +0 E(V,) ]
which coincides with theGFof Choudhury [4] irrespective of the notationsdise

1,0

getP(z)=

1,0

6. Special cases

For validating our model it is important to analydegough specific distribution. By

choosing some known distributions for service tiraed vacation times the validity of
the system is examined in this section.

Model-1: Let the distribution of service and vacation tinbesassumed as Exponential.
Then equations (45), (46), (47), (48) and (49) bexo

— (uluz(l_ r _}"(Hz + plvll))Vle _ugp, t 7\,(].12 + pul)

Ql,o p
(l_ r)uluzy\'(vz + le) “’1“2
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o A0z, )y, = (h=dz )] —0—=22M[(A Az, N =2z+p, )~ + p( - 22}
{2022+ 1) 0.~ 2z+11,) ~ [(1- pYA = Az 1, ) + P, A= 1(1-Z)} A=Az +v, ) = Az+v,)

P(

0

[1ah, (1= 1) = A, + Py KLV +60v] +6v,v, luu, (1-1)

A2 =1(v, +0v, ) (1, + Py Vo V,} + (v, + 0, ) (L= v, v, {r e, (i, + puy)

+ 7‘(“2 + pulz + plvlllvlz)}

a ViVa Ly, (1= 1) =M, +puy )’ o
[gh, (1= 1) = A, + P KL V5 +0vE +0v,v, Jup, (1-1)
A= (v, +0v (R, +Pry vVt + (v, +0v ) (L= 1)v v {rpgp, (u, +puy)
+ My + Puy + Py, )}
q Q.o

ViVa L, (1= 1) =My, + Py )y’

Model-I1: Let the service and vacation times be taken aangridistributions. Then
equations (45), (46), (47), (48) and (49) become

— (Hluz(l_ r) - }"(Hz + pul)) ViV, p= rugp, +}"(H2 + le)

Ql,O
(1=n)pypA(v, +6v)) [THI

(A =22+ v, [A-0)(v, 0" = (A =2z +v,K)* ] +0(v,K) " (v,k)
o) *{(r =2z + k)T =2z + 1,00 = (1= P)a,k) 1] - P,k (1K) 1}
Z)=
{{(x—xzwzkﬁz(x—xz+ulk>k—(1—p>oxlk>k(1—r(1—z»1}

= PR (1K) A= 1A= 2} =2z + v, (L =2z + v, R
(1= 1)y, =20, +pu )iy, (1= D[R+ 15 +0(k+1)v7 +26v,v,K]
A2 =2rkv, v, (v, +0v,) (1, + Py i, + (v, +0v,)(A= {2k, (u, +pu,)r
~M(k+ 1) +plk+ L; +p(k+1s + 200, ]}v,v,

s 2kv2v3 (g1, (1= 1) = Ao, + pu, ))° e
[(L= Oy, =M, + i Hpgp, (1= DI+ 15 +0(k + 1y +26v,v,K]
M =2rkv v, (v, +0v,)(, + Py )b py, + (v, +0v, (1= {2k, (, +puy)r
Wy = —M(k+ 1) +p(k+ D +pk+D; + 2004, 1}v,v, o

2kV12V§(“1“2(1_ n —X(uz + p“l))z
7. Numerical results
Assigning particular values to the parameters @& #ystem ag=0.02, p, =2.5,

p, =15, v, =2,v, =16 =0.3,r =0.05 and varying the value of from 0.1 to 1 in steps
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of 0.1 we calculated the values of Lq and Wq whack tabulated in Table-1 and the
corresponding graphs are drawn for Model-l and Mdiden Figure 1 and Figure 2
respectively. We observe that wherincreases, there is a steady increase in Lq ds wel
as in Wq for both Model-I and Model-Il as can beested.

Table 1:
A Modell (Lg) | Modekl (Lg) | Modekl (W) | ModekIl (W)
0.1 0.08951 0.072952 0.89516: 0.72951!
0.z 0.28246. 0.22956:. 0.94154. 0.76521i
0.2 0.49911! 0.40442 0.99823: 0.80884
0.4 0.74838! 0.60437. 1.06912; 0.86338!
0.t 1.04425. 0.84018i 1.16028. 0.93354i
0.€ 1.41005! 1.12981 1.28186: 1.02710
0.7 1.88781! 1.50560 1.452:6¢ 1.15816.
0.€ 2.56168 2.03231. 1.70779. 1.35487.
0.c 3.62829: 2.86124. 2.13428! 1.68308.
1.C 5.67911! 4.44758. 2.98901! 2.34083:
6 -
3 -
5 -
2.5
4 -
3 - 2 1
2 1.5 -
1 -
1 4
0 _ T T 1
0 0.5 1 15 0.5 . . .
== Model-I == Model-Il 0 0.5 1 1.t

Figure 1: Arrival rate versus L

e NNAAAI T BB NAAAA T

Figure 2: Arrival rate versus i/

Again assigning particular values s 2, u, =8, p, =5, v, =5, v, =7,0=0.4,r=0.2
and varying the value of p from 0.1 to 1 in step6.& we calculated the values of Lq and
Wq which are tabulated in Table-2 and the corredpgngraphs are drawn for Model-I
and Model-Il in Figure 3 and Figure 4 respectivélye observe that when p increases,
there is a steady increase in Lg as well as in Wfgbbth Model-l and Model-Il as

expected.
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Table 2:
P Modekl (L) ModekIl (L) Model-l (W;) | Modekll (W)
0.1 0.67824 0.58236! 0.33912. 0.29118:
0.2 0.76503! 0.66236! 0.38251 0.33118.
. 0.86982! 0.75818: 0.43491! 0.37909:
0.4 0.99817. 0.87468: 0.49908¢ 0.43734.
0.5 1.15813! 1.01894: 0.57906! 0.50947.
0.€ 1.36916! 1.201731 0.68098! 0.60086:!
0.7 1.62914 1.44016! 0.81457! 0.72008:
0.8 1.99273. 1.76326! 0.99636! 0.88163:
0.€ 2.51362 2.22451. 1.25681. 1.11225!
1.C 3.31766. 2.93442 1.65883! 146721
1.7
3.5
3 1.4 -
2.5 1.1
2 4
0.8 -
1.5
L 0.5 -
0.5 - . . . 0.2 . . .
0 0.5 1 1.5 0 0.5 1 1.5

=&—Model| == Modelll

Figure3: p (probability of SOS) versus,

—&—Model| == Modelll

Figure4: » (probability of SOS) versuil],

Taking the values of the parameters ofAa&, p = 0.2,u, =9, u, =8, v, =4,

v,=2, r =0.5 and varying the value 6ffrom 0.1 to 1 in steps of 0.1 we calculated the
values of Lq and Wq which are tabulated in Tabler8 the corresponding graphs are
drawn for Model-l and Model-Il in Figure 5 and Figu respectively. We observe that
wheng increases, there is a steady increase in Lq andovwapth Model-1 and Model-11

as can be expected.
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Table3:
0 Model (L) Modekll (Ly) | Modekl (Wy) | Modell (wy)
1 | 1.312461 1.23482. 0.65623. 0.61741.
0.2 | 1.43151. 1.338991 0.71575 0.66949!
0.2 | 1.52079! 1.41711! 0.760401 0.70855!
0.4 | 1.59079! 1.47787! 0.79512; 0.73€94(
0.5 | 1.64580! 1.52649! 0.82290I 0.76324!
0.€ | 1.69125. 1.56626. 0.84562' 0.78313:
0.7 | 1.72913: 1.59940 0.86456! 0.79970.
0.6 | 1.76118 1.62745. 0.88059: 0.81372i
0. | 1.78865 1.65149. 0.89432! 0.82574!
1.C | 1.81246! 1.67232. 0.90623: 0.83616:
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Figure5: & (probability of SOV) versuk,

8. Conclusion

The analysis carried out in “An M/G/1 feedback Qeiag system with second optional
service and with second optional vacation” is tdaob the probability generating
function for the number of customers in the systerd also to obtain waiting time of a
customer in the system. Numerical work is carried to study the effect of some

=&—Model | == Modelll
Figure6: & (probability of SOV) versumy,

parameters on the operating characteristics asybtem.
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