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1. Introduction

In 1963, bitopological space was introduced by XHb] as triples (X7, 7,) where X is
non empty set angl, andJ, are topologies defined on X. After that, a largamber of
papers have been written to generalize the toptdbgoncept to a bitopological spaces,
by Aarts and MrSevi” [1], Deak [12] and Dvalishyili4]. The concept of biclosure space
was introduced and studied by Boonpok and KhampaKdgin 2010.

In 1966, Levine [18] introduced semi-opest and semi-continuous map in a
topological space. The concepts of semi-open sgtsami-continuous map in closure
space were introduced by Khampakdee [17]. Theemtraf pre-open set was introduced
by Mashhour et.al. [19] in 1982. The concept of ppen set in closure space was
introduced by Rao, Gowri and Swaminathan [8], d&rddoncept semi-open sets and pre-
open sets was further generalized in biclosure esfigc Rao and Gowri [7] in 2006.
Connectedness, semi-connectedness and pre-commestedn closure space were
introduced by our self [22, 24]. We have [23] geatieed the concept of connectedness in
biclosure space. Here we are using closure spacelace of closure space for
convenienceln this paper, we introduce semi-connectednesspagatonnectedness in
biclosure space and study some of their fundamentglerties.

2. Preliminaries

Definition 2.1. [3] Two maps wand y from power set of X to itself are called biclosure
operators for X if they satisfies the followingoperties:

115



U.D.Tapi and Bhagyashri A. Deole
Dug=9,up =p;
(2) A0 uyA AOu,A, forall AO X;
B)u, (AOB)=yAUOuB,u (AO B)=u, Al u,B, forall AOX.
A structure(X, u,, U, ) is called a biclosure space.

Definition 2.2. [13] A subsefAin a biclosure spacgX, k,, k) is said to be
1. Semiopenif A1k (inf (A)), for all+ 1, 2.

2. Semi closed if inf  (k (A))J A, forall=1, 2.
3. Preopenif AD int (k (A), forall+ 1, 2.
4. Pre closed ifk (int (A))J A, forall=1, 2.

Definition 2.3. [16] Let (X, u,, U, ) and (Y, Vv,, V,) are biclosure spaces and let
i€{l,2).Thenamag: (X, u,u,) - (Y,V,V,)is called:

(i) i-open (respectively, i-closed) if the m&p(X, u;) — (Y, V,)is open (respectively,
closed).

(i) Open (respectively, closed) if fis i-opengpectively, i-closed) for all€ {1, 2}.

(iii) i-continuous if the mad: (X, u;) - (Y, v,) is continuous for all € {1, 2}.

(iv) continuous if f is i-continuous, for alld {1, 2}.

Definition 2.4. [16] Let (X, u,, u,) and (Y, v,, V,) are biclosure spaces. A map
f:(X,u,u,) > (Y,Vv,\,)is called semi-continuous ff*(G) is a semi-open subset
of (X, u,, u,) for every open subset G ¢Y, v,, v,).Clearly, if f is continuous, then f
is semi-continuous. The converse need not be true.

Definition 2.5.[1€] Let (X, u,, u,) and (Y, v,, V,) be biclosure spaces. A map
f: (X u,u,) - (Y,V,\,)is called pre-continuous ff*(G) is a pre-open subset of
(X, uy, u,) for every open subset G §Y, v,, Vv,).

Definition 2.6. [24] A closure space (X, u) is said to be semi-conmkiftend only if any
semi-continuous map f from X to the discrete spf@icel} is constant. A subset A in a
closure space (X, u) is said to be semi-conneétadvith the subspace topology is semi-
connected closure space.

Definition 2.7. [24] A closure space (X, u) is called pre-connectechi anly if there
exists a pre-continuous map f from X to the discigiace {0, 1} is constant. A subset A
in a closure space (X, u) is said to be pre-comueiftA with the subspace topology is
pre-connected closure space.
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3. Semi-connectednessin biclosure space
Definition 3.1. A biclosure spacé€X, u, u2) is called semi-connected if there exists a
semi-continuous mapping f from X to discrete sp@cel} is constant.

Example 3.2. Consider a biclosure spa@t, u;, u, ), where X = {a, b, ¢}, anduand y
are two closure operators which are defined by
u,: P(X) - P(X) such that

u{b}=u {c}=u {b, c}={b, c},

w{aj=ufa, b}=ufa, cj=u{X}=X, u{ I ¢

Then underlying topology for (X, u ) is t,(u ) = {{afb}, {c}, {a, b}, {b, c}, { &, c}, X.¢@}
Hence(X, u,) is a closure space.

Open sets = {{a}, {b}, {c}, {a, b}, {a, c}, X, @}.

SO sets of (X, p ) = {{a}, {b}, {c}, {a, b}, {a, c}, X, &.

And u,: P(X)- P(X) such that

u,{aj=fa, b}, ufb}={b, c}, u {c}={c, a},

u,{a, b= u,{b, c= ufa, clEX=u G u { &= @

Then underlying topology for (X,u ) is t{u ) = {{afb}, {c}, {a, b}, {b. c}. {a . c}, X, @

Hence (X, y ) is a closure space.

Open sets = {{a}, {b}, {c}, {a, b}, {b, c}, {a, c}, X, &,

SO sets of (X, u ) = {{a}, {b}, {c}, {a, b}, {b, c}, {a, c}, X, &,

Semi-open sets of biclosure space (Xw),are {{a}, {b}, {c}, {a, b}, {a, c}, X , ¢}

Letf: X - {0, 1} is a semi-continuous mamg such that

f {1}={a}={b}={c}={a, b}={b, c}={a, c}=X.

f 0} = ¢ i. e. fla}=f{b}=f{c}=f{a, b}= f{b, c}=f{a, c}=f{X}=1,f{ }&O0.
Here semi-continuous mapping f is constant.

Hence(X, u,, U, ) is a semi-connected biclosure space.

Example 3.3. Consider a biclosure spa@€, u,, u, ), where X = {a, b, c, d}, andi, and
u, are two closure operators which are definedifgyP(X) - P(X)such that
u{a}={a, b},u {b}={a, b}, u {c}={b, c},

u{d}={c, d}, uiX}=X,u{ r @

For all subsets A contained in X, let
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()= {‘”"f e |
[Hu,(8): all A, otherwise
Then underlying topology fofX, u,) is t (4 ) = {{a}, {b}, {c}, {d}, X , &}
Hence(X, u,) is a closure space.
Open sets = {{a}, {b}, {c}, {d}, X, &.
SO sets of (X, p ) = {{a}, {b}, {c}, {d}, X, @&.
And u,: P(X) - P(X) such that
u,{a} = {a, b, ¢}, u,{b} ={b, c, d}, u{c}= {c. a, d},
u{d} ={d, a, b}, u{X}=X, u,{g=¢
For all subset A contained in X, let
U, (A)= {4”’” e |
{u ,(a): all A, otherwise
Then underlying topology fofX, u,) is t (u, ) = {{a}, {b}, {c}, {d}, X @
Hence(X, u,) is a closure space.
Open sets = {{a}, {b}, {c}, {d}, X, @&,
SO sets of(X, u ) = {{a}, {b}, {c}, {d}, X, @,
Semi-open sets of biclosure space (Xwj),are {{a}, {b}, {c}, {d}, X, ¥
Let f: X - {0, 1} is a semi-continuous mapping such that
f{1}={a}={b}={c}={d}={a, b}={b, c}={c,d }={d, a}=
{a, b, c}={b, c, d}={c, d, a}={d, a, b} = X,
fH0}= ¢
Here semi-continuous mapping f is constant.
Hence(X, u,, U, ) is a semi-connected biclosure space.

Definition 3.4. A biclosure spac€X, u,, U, ) is called semi-disconnected if there exists
a semi-continuous mapping f from X to discrete spg@ 1} is surjective.

Theorem 3.5. A biclosure spacéX, u,, U, ) is semi connected if and only if every semi

continuous mapping f from X into a discrete spacg{®, 1} with at least two points is
constant.

Proof: Necessary: Let (X, U, U, ) is a semi-connected biclosure space. Then there
exists a semi continuous mapping f from the X thi discrete space Y= {0, 1}, for each
yay,
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fHy} = @or X. If f {y} = dorally ¥, then fceases to be a mapping. Therefore
f{y 3 =X for auniquey, Y . This implies thaf(X) = {y  and hence fis a

constant mapping.
Sufficiency: Let every semi continuous mapping f from X intdiscrete space Y= {0, 1}

is constant. Suppose U is a semi open set in ashig spacé¢X, u,, u, ).If U# g we
will show that U=X. Otherwise, choose two fixed poingsand y, in Y. Define
f:X 5Y by
0= {yl ifxOU; |
Y,, otherwise
Then for any open setVin,
U, if Vcontains yonly ,

X /U, if Vcontains yonly,
X,if Vcontains both y and.y
@,otherwise

f1(V)=

In all the case$ (V) is semi open in X. Hence f is not constant semiiooous
mapping. This is a contradiction to our assumptidns proves that the only semi—open
subset of X isp and X. Henceg(X, u,, U, ) is semi-connected biclosure space.

Theorem 3.6. The following assertions are equivalent:
1. (X, u,, u,)is semi-connected biclosure space.

2. The only subsets of X both semi-open and semi-dlase@ and X.
3. No semi-continuous mappirfg X — {0, 1} is surjective.

Proof: [1] = [2]

Let (X, u,, U, ) is semi-connected biclosure space. Supfese X is both semi-open
and semi-closed such th@&# @ and G¢ X, then X=Gl & , Where4is
complement of G in X. Hence Semi-continuous mapfing — {0, 1} is not constant i.
e. (X, u;, u,) is not semi-connected biclosure space, whichcisnaradiction to our

initial assumption. Hence the only subsets of Xhlsetmi-open and semi-closed ape
and X.

[2] =[3]
Suppose the only subsets of X both semi-open anéddesed arep and X. Let
f. X - {0, 1} is a semi-continuous surjection. Thei{0} # gand f {0} #X. But

{0} is both open and closed in {0, 1}.Hende{0} is semi-open and semi-closed in X.
This is a contradiction to our assumption. Henceemi-continuous mapping
f: X - {0, 1} is surjective.
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[3]=[1]

Let no semi-continuous mappifgX — {0, 1} is surjective. If possible let biclosure
space

(X, uy, u,) is not semi-connected biclosure space X3t LB, A and B are also semi
closed sets. Then

_|LifxOA,
Xn () = {O,if xOA.
is semi-continuous surjection which is a contradicto our initial assumption. Hence
biclosure spacéX, u, uz) is semi-connected biclosure space.

Theorem 3.7. The semi-continuous image of a semi-connected dickospace is semi-
connected biclosure space.

Proof: Let biclosure spacé€X, u, u2) is a semi-connected biclosure space. Consider a
semi-continuous mappinfy X - f(X) is surjective. If f(X) is not semi-connected
biclosure space, there would be a semi-continuogjeation g: f(X) — {0, 1} so that

the composite function g X - {0, 1} would also be a semi-continuous surjection,

which is a contradiction to semi-connectednessadbure spacéX, u,, u, ). Hence
f(X) is a semi-connected biclosure space.

4. Pre-Connectednessin Biclosure Space:
Definition 4.1. A biclosure spacéX, u,, U, ) is called pre-connected if there exists a
pre-continuous mapping f from X to discrete spa@elf is constant.

Example 4.2. Consider a biclosure spa@€, u,, U, ), where X = {a, b, c}, andy, and
u, are two closure operators which are defined by
u,: P(X) - P(X) such that

ufb}=u {c}=u b, c}={b, c},
wfaj=ufa, bj=ufa, cjmu{X}=X, u{ & @
Then underlying topology for (X, u ) is t,(u ) = {{afb}, {c}, {a, b}, {b, c}, { a, c}, X, @}

Hence(X, u,) is a closure space.
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Open sets ={{a}, {b}, {c}, {a, b}, {a, c}, X, @&
PO sets of (X, u ) ={{a}, {a, b}, {a, c}, X@ }.
And u, : P(X)- P(X) such that
u,{aj=fa, b}, ufb}={b, c}, u {c}={c, a},
ufa, b= ufb, c= ufa, A=X=u,{<}, u{ ¢= @
Then underlying topology for (X,u ) is t{u ) = {{afb}, {c}, {a, b}, {b, c}, { a, c}, X @}
Hence(X,u,) is a closure space.
Open sets = {{a}, {b}, {c}, {a, b}, {b, ¢}, {a, c}, X, &,
PO sets of (X, u ) = {{a}, {b}, {c}, {a, b}, {b, c}, {a, c}, X, &,
Pre-open sets of biclosure space (X, y , u ) are,{{a} b}, {a, c}, X, @.

Let f: X - {0, 1} is a pre-continuous mapping suchttha
f{1}={a}={b}={c}={a, b}={b, c}={a, c}=X,

fH{0}=¢
Hence pre-continuous mapping f is constant.
Hence(X, u, u, )is a pre-connected biclosure space.

Example 4.3. Consider a biclosure spa@€, u, u, ), where X ={a, b, c, d}, and, and

u, are two closure operators which are defined by

u,: P(X) - P(X) such that

u,{a}={a, b},u {b}={a, b}, u {c}={b, c},

u{d}={c, d}, u{X}=X, u{ p @

For all subsets A contained in X, lat(A)= {Wf A=g _
{u (8 : alJl A, otherwise

Then underlying topology fofX, u,) is t (4 ) = {{a}, {b}, {c}, {d}, X , @&

Hence(X, u,) is a closure space.

Open sets = {{a}, {b}, {c}, {d}, X, &.

PO sets of (X, p ) = {{a}, {b}, {c}, {d}, X, &.

And u,: P(X) - P(X) such that

u{a}={a, b, c}, u,{b}={b, c, d}, u {c}={c , a, d},

u{d}={d, a, b}, u,{X}=X,u{ ¢= ¢
For all subsets A contained in X, let
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0, ()= {a” A |
{u ,(a): all A, otherwise
Then underlying topology fofX, u,) is t (u, ) = {{a}, {b}, {c}, {d}, X , @&
Hence(X, u,) is a closure space.
Open sets are {{a}, {b}, {c}, {d}, X, ¢},
PO sets of (X, u ) ={{a}, {b}, {c}, {d}, X, 4,
Pre-open sets of biclosure space (Xw),are {{a}, {b}, {c}, {d}, X, ¥

Let f: X - {0, 1} is a pre-continuous mapping such that
f{1}={a}={b}={c}={d}={a, b}={b, c}={c,d }={d, a}={a, b, c}=
{b, ¢, d}={c, d, a}={d, a, b}=X.

fH0}= @

Hence pre-continuous mapping f is constant.
Then(X, u,, U, ) is a pre-connected biclosure space.

Definition 4.4. A biclosure spac€X, u,, U, ) is called pre-disconnected biclosure space
if and only if any pre-continuous map f from X twetdiscrete space {0, 1} is surjective.

Theorem 45. If {A, ;100 is a family of pre-connected biclosure subsetsPrH-
connected biclosure spa@g u;, u, ), then LA, is also a pre-connected biclosure subset
of (X, u,, U, ),whereA is any index set.

Proof: EachA,, i0 is a pre-connected biclosure subset of pre-coedebiclosure
space(X, u,, U,) so there exists pre-continuous mappfrigA, - {0, 1} is constant.
Let a pre-continuous mappirfg A, {0, 1} is not constantf {1} #A . which is a
contradiction to each ;Ais pre-connected subsets (&, u,, U,), i.e. pre-continuous
mapping f is constant. HendeA, is pre-connected biclosure space.

Theorem 4.6. Let (X, u,, u,)and (Y, v;, Vv,) are two biclosure spaces ahdX - Y

is a bijection. Then

1) f is pre-continuous mapping and X is a pre-cotee: biclosure space then Y is
connected biclosure space.

2) fis continuous mapping and X is pre-connectietbure space then Y is a connected
biclosure space.

3) fis pre-open mapping and Y is pre-connectetbbice space then X is connected
biclosure space.

4) f is open mapping and X is connected biclosyracs then Y is pre-connected
biclosure space.
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Proof: 1. Let (Y, v,, V,) is a biclosure space and X is a pre-connectediocé space
then there exists a pre-continuous mapding: X — {0, 1}is constant. Consider a
Pre-continuous mapping: Y - {0, 1} , given thatf: X - Y is pre- continuous

mapping and f is bijection so that g is also a tamsmapping. Hence Y is connected
biclosure space.

2. Given that X is a pre-connected biclosure spaeeg: X — {0, 1} pre-continuous

mapping is constanf Y - X is continuous bijection, so thdt'og: Y - {0, 1}
continuous mapping is constant. Hence Y is conadaitdosure space.

3. Given that Y is pre-connected biclosure spaeed: Y — {0, 1} pre-continuous

mapping is constant. Sinck X - Y is pre-open and bijection mapping so that
continuous mappin§og: X — {0, 1}is constant. Hence X is connected biclosure space.

4. Given that X is connected biclosure space i@rainuous mapping: X - {0, 1}is

constant andf ™ Y — X is open mapping so that it is a pre-open mapphen t
f?0og:Y - {0, 1} is a pre-continuous constant mapping. Hence Y weaconnected
biclosure space.

Theorem 4.7. A biclosure spacéX, u,, U, ) is pre-disconnected if and only if there
exists a pre-continuous map f from X onto a digcteb point space Y = {0, 1}.
Proof: Given that biclosure spad, u,, U, ) is pre-disconnected i.e. there exists a pre-

continuous mag: X —{0, 1} is not constant anfi™{0} # ¢.If a pre-continuous map

f: X - {0, 1} is onto, so that mapping is not constant. He(¥eu,, u,) is pre-
disconnected biclosure space.

5. Conclusion
In this paper, the idea of semi-connectedness amdgnnectedness in biclosure space
were introduced and studied some of their fundaatgmoperties by theorems.
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