Intern. J. Fuzzy Mathematical Archive Vol. 8, No. 2, 2015, 115-124 ISSN: 2320 –3242 (P), 2320 –3250 (online) Published on 3 November 2015 www.researchmathsci.org

International Journal of **Fuzzy Mathematical Archive**

Semi-Connectedness and Pre-Connectedness in Biclosure Space

U.D. Tapi¹ and Bhagyashri A. Deole²

Department of Applied Mathematics and Computational Science Shri G. S. Institute of Technology and Sciences (M.P.), India ¹E-mail: utapi@sgsits.ac.in ²E-mail: deolebhagyashri@gmail.com

Received 17 October 2015; accepted 28 October 2015

Abstract. Our aim, in the present paper, is to introduce two new types of connectedness in biclosure space namely semi-connectedness in biclosure space and pre-connectedness in biclosure space. We also investigate the fundamental properties of these new types of connectedness by theorems.

Keywords: Closure space, connectedness in closure space, biclosure space, connectedness in biclosure space, semi-connectedness in biclosure space, pre- connectedness in biclosure space.

AMS Mathematics Subject Classification (2010): 54A40

1. Introduction

In 1963, bitopological space was introduced by Kelly [15] as triples (X, \mathcal{I}_1 , \mathcal{I}_2) where X is non empty set and \mathcal{I}_1 and \mathcal{I}_2 are topologies defined on X. After that, a larger number of papers have been written to generalize the topological concept to a bitopological spaces, by Aarts and MrŠevi⁽¹¹⁾, Deak [12] and Dvalishvili [14]. The concept of biclosure space was introduced and studied by Boonpok and Khampakdee [4] in 2010.

In 1966, Levine [18] introduced semi-open set and semi-continuous map in a topological space. The concepts of semi-open set and semi-continuous map in closure space were introduced by Khampakdee [17]. The concept of pre-open set was introduced by Mashhour et.al. [19] in 1982. The concept of pre open set in closure space was introduced by Rao, Gowri and Swaminathan [8], and the concept semi-open sets and pre-open sets was further generalized in biclosure space by Rao and Gowri [7] in 2006. Connectedness, semi-connectedness and pre-connectedness in closure space were introduced by our self [22, 24]. We have [23] generalized the concept of connectedness in biclosure space. Here we are using closure space in place of closure space for convenience. In this paper, we introduce semi-connectedness and pre-connectedness in biclosure space and study some of their fundamental properties.

2. Preliminaries

Definition 2.1. [3] Two maps u_1 and u_2 from power set of X to itself are called biclosure operators for X if they satisfies the following properties:

(1) $u_1 \phi = \phi$, $u_2 \phi = \phi$; (2) $A \subseteq u_1 A$, $A \subseteq u_2 A$, for all $A \subseteq X$; (3) $u_1(A \cup B) = u_1 A \cup u_1 B$, $u_2(A \cup B) = u_2 A \cup u_2 B$, for all $A \subseteq X$. A structure (X, u_1, u_2) is called a biclosure space.

Definition 2.2. [13] A subset A in a biclosure space (X, k_1, k_2) is said to be

1. Semi open if $A \subseteq k_i$ (int $_{k_i}(A)$), for all i = 1, 2.

2. Semi closed if int $_{k_i}(k_i(A)) \subseteq A$, for all i = 1, 2.

3. Pre open if A \subseteq int _k (k_i(A)), for all i = 1, 2.

4. Pre closed if k_i (int k_i (A)) \subseteq A, for all i = 1, 2.

Definition 2.3. [16] Let (X, u_1, u_2) and (Y, v_1, v_2) are biclosure spaces and let $i \in \{1, 2\}$. Then a map $f : (X, u_1, u_2) \rightarrow (Y, v_1, v_2)$ is called: (i) i-open (respectively, i-closed) if the map $f : (X, u_1) \rightarrow (Y, v_1)$ is open (respectively,

(1) 1-open (respectively, 1-closed) if the map $f: (X, u_i) \to (Y, V_i)$ is open (respectively, closed).

(ii) Open (respectively, closed) if f is i-open (respectively, i-closed) for all $i \in \{1, 2\}$.

(iii) i-continuous if the map f: $(X, u_i) \rightarrow (Y, v_i)$ is continuous for all $i \in \{1, 2\}$. (iv) continuous if f is i-continuous, for all $i \in \{1, 2\}$.

Definition 2.4. [16] Let (X, u_1, u_2) and (Y, v_1, v_2) are biclosure spaces. A map $f: (X, u_1, u_2) \rightarrow (Y, v_1, v_2)$ is called semi-continuous if $f^{-1}(G)$ is a semi-open subset of (X, u_1, u_2) for every open subset G of (Y, v_1, v_2) . Clearly, if f is continuous, then f is semi-continuous. The converse need not be true.

Definition 2.5. [16] Let (X, u_1, u_2) and (Y, v_1, v_2) be biclosure spaces. A map $f: (X, u_1, u_2) \rightarrow (Y, v_1, v_2)$ is called pre-continuous if $f^{-1}(G)$ is a pre-open subset of (X, u_1, u_2) for every open subset G of (Y, v_1, v_2) .

Definition 2.6. [24] A closure space (X, u) is said to be semi-connected if and only if any semi-continuous map f from X to the discrete space $\{0, 1\}$ is constant. A subset A in a closure space (X, u) is said to be semi-connected if A with the subspace topology is semi-connected closure space.

Definition 2.7. [24] A closure space (X, u) is called pre-connected if and only if there exists a pre-continuous map f from X to the discrete space $\{0, 1\}$ is constant. A subset A in a closure space (X, u) is said to be pre-connected if A with the subspace topology is pre-connected closure space.

3. Semi-connectedness in biclosure space

Definition 3.1. A biclosure space (X, u_1, u_2) is called semi-connected if there exists a semi-continuous mapping f from X to discrete space $\{0, 1\}$ is constant.

Example 3.2. Consider a biclosure space (X, u_1, u_2) , where $X = \{a, b, c\}$, and u_1 and u_2 are two closure operators which are defined by $u_1: P(X) \rightarrow P(X)$ such that $u_1\{b\}=u_1\{c\}=u_1\{b, c\}=\{b, c\}$, $u_1\{a\}=u_1\{a, b\}=u_1\{a, c\}=u_1\{X\}=X, u_1\{\phi\}=\phi$. Then underlying topology for (X, u_1) is t $(u_1) = \{\{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, X, \phi\}$ Hence (X, u_1) is a closure space. Open sets $= \{\{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, X, \phi\}$. SO sets of $(X, u_1) = \{\{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, X, \phi\}$. And $u_2: P(X) \rightarrow P(X)$ such that $u_2\{a\}=\{a, b\}, u_2\{b\}=\{b, c\}, u_2\{c\}=\{c, a\},$ $u_2\{a, b\}=u_2\{b, c\}=u_2\{a, c\}=X=u_2\{X\}, u_2\{\phi\}=\phi$. Then underlying topology for (X, u_2) is t $(u_2) = \{\{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, X, \phi\}$

Hence (X, u_2) is a closure space. Open sets = {{a}, {b}, {c}, {a, b}, {b, c}, {a, c}, X, ϕ }, SO sets of (X, u_2) = {{a}, {b}, {c}, {a, b}, {b, c}, {a, c}, X, ϕ }, Semi-open sets of biclosure space (X, u_1, u_2) are {{a}, {b}, {c}, {a, b}, {a, c}, X, ϕ }.

Let f: X \rightarrow {0, 1} is a semi-continuous mapping such that f⁻¹{1}={a}={b}={c}={a, b}={b, c}={a, c}=X. f⁻¹{0} = ϕ , i. e. f{a}=f{b}=f{c}=f{a, b}=f{b, c}=f{a, c}=f{X}=1,f{\phi}=0. Here semi-continuous mapping f is constant. Hence (X, u₁, u₂) is a semi-connected biclosure space.

Example 3.3. Consider a biclosure space (X, u_1, u_2) , where $X = \{a, b, c, d\}$, and u_1 and u_2 are two closure operators which are defined by $u_1: P(X) \rightarrow P(X)$ such that $u_1\{a\}=\{a, b\}, u_1\{b\}=\{a, b\}, u_1\{c\}=\{b, c\}, u_1\{d\}=\{c, d\}, u_1\{X\}=X, u_1\{\phi\}=\phi$. For all subsets A contained in X, let

$$\mathbf{u}_{1}(\mathbf{A}) = \begin{cases} \phi, \text{if } \mathbf{A} = \phi; \\ \bigcup \{\mathbf{u}_{1}(a) : a \in A\}, otherwise \end{cases}$$

Then underlying topology for (X, u_1) is t $(u_1) = \{\{a\}, \{b\}, \{c\}, \{d\}, X, \phi\}$

Hence (X, u_1) is a closure space. Open sets = {{a}, {b}, {c}, {d}, X, ϕ }. SO sets of $(X, u_1) =$ {{a}, {b}, {c}, {d}, X, ϕ }. And u_2 : P(X) \rightarrow P(X) such that u_2 {a} = {a, b, c}, u_2 {b} ={b, c, d}, u_2 {c}= {c, a, d}, u_2 {d} = {d, a, b}, u_2 {X}= X, u_2 { ϕ }= ϕ . For all subset A contained in X, let $u_2(A) = \begin{cases} \phi, \text{if } A = \phi; \\ \cup \{u_2(a) : a \in A\}, otherwise. \end{cases}$

Then underlying topology for
$$(X, u_2)$$
 is $t(u_2) = \{\{a\}, \{b\}, \{c\}, \{d\}, X, \phi\}$

Hence (X, u_2) is a closure space.

Open sets = { { a}, {b}, {c}, {d}, X, ϕ },

SO sets of $(X, u_2) = \{\{a\}, \{b\}, \{c\}, \{d\}, X, \phi\},\$

Semi-open sets of biclosure space (X, u_1, u_2) are $\{\{a\}, \{b\}, \{c\}, \{d\}, X, \phi\}$.

Let f: $X \rightarrow \{0, 1\}$ is a semi-continuous mapping such that

 $f^{-1}{1} = {a} = {b} = {c} = {d} = {a, b} = {b, c} = {c, d} = {d, a} =$

 ${a, b, c} = {b, c, d} = {c, d, a} = {d, a, b} = X,$

$$f^{-1}{0} = \phi.$$

Here semi-continuous mapping f is constant.

Hence (X, u_1, u_2) is a semi-connected biclosure space.

Definition 3.4. A biclosure space (X, u_1, u_2) is called semi-disconnected if there exists a semi-continuous mapping f from X to discrete space $\{0, 1\}$ is surjective.

Theorem 3.5. A biclosure space (X, u_1, u_2) is semi connected if and only if every semi continuous mapping f from X into a discrete space $Y = \{0, 1\}$ with at least two points is constant.

Proof: Necessary: Let (X, u_1, u_2) is a semi-connected biclosure space. Then there exists a semi continuous mapping f from the X into the discrete space $Y = \{0, 1\}$, for each $y \in Y$,

 $f^{-1}{y} = \phi$ or X. If $f^{-1}{y} = \phi$ for all $y \in Y$, then f ceases to be a mapping. Therefore $f^{-1}{y_0} = X$ for a unique $y_0 \in Y$. This implies that $f(X) = {y_0}$ and hence f is a constant mapping.

Sufficiency: Let every semi continuous mapping f from X into a discrete space $Y = \{0, 1\}$ is constant. Suppose U is a semi open set in a biclosure space (X, u_1, u_2) . If $U \neq \phi$, we will show that U=X. Otherwise, choose two fixed points y_1 and y_2 in Y. Define f: $X \rightarrow Y$ by

$$\mathbf{f}(\mathbf{x}) = \begin{cases} \mathbf{y}_1, & \text{if } \mathbf{x} \in U; \\ \mathbf{y}_2, & \text{otherwise} \end{cases}$$

Then for any open set V in Y,

$$f^{-1}(V) = \begin{cases} U, \text{ if V contains } y_1 \text{ only,} \\ X / U, \text{ if V contains } y_2 \text{ only,} \\ X, \text{ if V contains both } y_1 \text{ and } y_2, \\ \phi, \text{ otherwise.} \end{cases}$$

In all the cases $f^{-1}(V)$ is semi open in X. Hence f is not constant semi-continuous mapping. This is a contradiction to our assumption. This proves that the only semi-open subset of X is ϕ and X. Hence (X, u_1, u_2) is semi-connected biclosure space.

Theorem 3.6. The following assertions are equivalent:

- 1. (X, u_1, u_2) is semi-connected biclosure space.
- 2. The only subsets of X both semi-open and semi-closed are ϕ and X.
- 3. No semi-continuous mapping f: $X \rightarrow \{0, 1\}$ is surjective.

Proof: $[1] \Rightarrow [2]$

Let (X, u_1, u_2) is semi-connected biclosure space. Suppose $G \subset X$ is both semi-open and semi-closed such that $G \neq \phi$ and $G \neq X$, then $X=G \cup G^C$, Where G^C is complement of G in X. Hence Semi-continuous mapping f: $X \rightarrow \{0, 1\}$ is not constant i. e. (X, u_1, u_2) is not semi-connected biclosure space, which is a contradiction to our initial assumption. Hence the only subsets of X both semi-open and semi-closed are ϕ and X.

 $[2] \Rightarrow [3]$

Suppose the only subsets of X both semi-open and semi-closed are ϕ and X. Let f: X \rightarrow {0, 1} is a semi-continuous surjection. Then $f^{-1}{0} \neq \phi$ and $f^{-1}{0} \neq X$. But {0} is both open and closed in {0, 1}. Hence $f^{-1}{0}$ is semi-open and semi-closed in X. This is a contradiction to our assumption. Hence no semi-continuous mapping f: X \rightarrow {0, 1} is surjective.

[3]⇒[1]

Let no semi-continuous mapping f: $X \rightarrow \{0, 1\}$ is surjective. If possible let biclosure space

 (X, u_1, u_2) is not semi-connected biclosure space. So $X=A \cup B$, A and B are also semi closed sets. Then

$$\chi_{A}(\mathbf{x}) = \begin{cases} 1, \text{if } \mathbf{x} \in \mathbf{A}, \\ 0, \text{if } \mathbf{x} \notin \mathbf{A}. \end{cases}$$

is semi-continuous surjection which is a contradiction to our initial assumption. Hence biclosure space (X, u_1, u_2) is semi-connected biclosure space.

Theorem 3.7. The semi-continuous image of a semi-connected biclosure space is semi-connected biclosure space.

Proof: Let biclosure space (X, u_1, u_2) is a semi-connected biclosure space. Consider a semi-continuous mapping $f: X \to f(X)$ is surjective. If f(X) is not semi-connected biclosure space, there would be a semi-continuous surjection $g: f(X) \to \{0, 1\}$ so that the composite function g o $f: X \to \{0, 1\}$ would also be a semi-continuous surjection, which is a contradiction to semi-connectedness of biclosure space (X, u_1, u_2) . Hence f(X) is a semi-connected biclosure space.

4. Pre-Connectedness in Biclosure Space:

Definition 4.1. A biclosure space (X, u_1, u_2) is called pre-connected if there exists a pre-continuous mapping f from X to discrete space $\{0, 1\}$ is constant.

Example 4.2. Consider a biclosure space (X, u_1 , u_2), where X = {a, b, c}, and u_1 and u_2 are two closure operators which are defined by u_1 : P(X) \rightarrow P(X) such that u_1 {b}= u_1 {c}= u_1 {b, c}={b, c}, u_1 {a}= u_1 {a, b}= u_1 {a, c}= u_1 {X}=X, u_1 { ϕ }= ϕ . Then underlying topology for (X, u_1) is t (u_1) = {{a}, {b}, {c}, {a, b}, {b, c}, {a, c}, X, ϕ }

Hence (X, u_1) is a closure space.

Open sets = {{a}, {b}, {c}, {a, b}, {a, c}, X, ϕ }. PO sets of (X, u₁) = {{a}, {a, b}, {a, c}, X, ϕ }. And u₂ : P(X) \rightarrow P(X) such that u₂{a}={a, b}, u₂{b}={b, c}, u₂{c}= {c, a}, u₂{a, b}=u₂{b, c}=u₂{a, c}=X=u₂{X}, u₂{ ϕ }= ϕ . Then underlying topology for (X, u₂) is t (u₂) = {{a}, {b}, {c}, {a, b}, {b, c}, {a, c}, X, ϕ } Hence (X,u₂) is a closure space. Open sets = {{a}, {b}, {c}, {a, b}, {b, c}, {a, c}, X, ϕ }, PO sets of (X, u₂) = {{a}, {b}, {c}, {a, b}, {b, c}, {a, c}, X, ϕ }.

Let f: X \rightarrow {0, 1} is a pre-continuous mapping such that f⁻¹{1}={a}={b}={c}={a, b}={b, c}={a, c}=X, f⁻¹{0} = ϕ . Hence pre-continuous mapping f is constant. Hence (X, u₁, u₂) is a pre-connected biclosure space.

Example 4.3. Consider a biclosure space (X, u_1, u_2) , where $X = \{a, b, c, d\}$, and u_1 and u_2 are two closure operators which are defined by u_1 : $P(X) \rightarrow P(X)$ such that $u_1\{a\}=\{a, b\}, u_1\{b\}=\{a, b\}, u_1\{c\}=\{b, c\},$

 $u_1{d} = {c, d}, u_1{X} = X, u_1{\phi} = \phi.$

For all subsets A contained in X, let $u_1(A) = \begin{cases} \phi, \text{if } A = \phi; \\ \bigcup \{u_1(a) : a \in A\}, otherwise. \end{cases}$ Then underlying topology for (X, u_1) is $t(u_1) = \{\{a\}, \{b\}, \{c\}, \{d\}, X, \phi\}$

Hence (X, u_1) is a closure space. Open sets = {{a}, {b}, {c}, {d}, X, ϕ }. PO sets of $(X, u_1) = \{\{a\}, \{b\}, \{c\}, \{d\}, X, \phi\}$. And u_2 : P(X) \rightarrow P(X) such that

 $u_{2}{a}={a, b, c}, u_{2}{b}={b, c, d}, u_{2}{c}={c, a, d},$

 $u_2{d} = {d, a, b}, u_2{X} = X, u_2{\phi} = \phi.$

For all subsets A contained in X, let

 $\begin{aligned} u_{2}(A) &= \begin{cases} \phi, \text{if } A = \phi; \\ \cup \{u_{2}(a) : a \in A\}, otherwise. \end{cases} \end{aligned}$ Then underlying topology for (X, u_{2}) is t $(u_{2}) = \{\{a\}, \{b\}, \{c\}, \{d\}, X, \phi\}$ Hence (X, u_{2}) is a closure space. Open sets are $\{\{a\}, \{b\}, \{c\}, \{d\}, X, \phi\},$ PO sets of $(X, u_{2}) = \{\{a\}, \{b\}, \{c\}, \{d\}, X, \phi\},$ Pre-open sets of biclosure space (X, u_{1}, u_{2}) are $\{\{a\}, \{b\}, \{c\}, \{d\}, X, \phi\}.$

Let f: X \rightarrow {0, 1} is a pre-continuous mapping such that f⁻¹{1}={a}={b}={c}={d}={a, b}={b, c}={c, d}={d, a}={a, b, c}={b, c, d}={c, d, a}={d, a, b}=X. f⁻¹{0} = ϕ ,

Hence pre-continuous mapping f is constant. Then (X, u_1, u_2) is a pre-connected biclosure space.

Definition 4.4. A biclosure space (X, u_1, u_2) is called pre-disconnected biclosure space if and only if any pre-continuous map f from X to the discrete space $\{0, 1\}$ is surjective.

Theorem 4.5. If $\{A_i : i \in A\}$ is a family of pre-connected biclosure subsets of Preconnected biclosure space (X, u_1, u_2) , then $\cup A_i$ is also a pre-connected biclosure subset of (X, u_1, u_2) , where A is any index set.

Proof: Each $A_i, i \in \wedge$ is a pre-connected biclosure subset of pre-connected biclosure space (X, u_1, u_2) so there exists pre-continuous mapping $f_i: A_i \to \{0, 1\}$ is constant. Let a pre-continuous mapping $f: \cup A_i \to \{0, 1\}$ is not constant, $f^{-1}\{1\} \neq A_i$ which is a contradiction to each A_i is pre-connected subsets of (X, u_1, u_2) , i.e. pre-continuous mapping f is constant. Hence $\cup A_i$ is pre-connected biclosure space.

Theorem 4.6. Let (X, u_1, u_2) and (Y, v_1, v_2) are two biclosure spaces and $f: X \to Y$ is a bijection. Then

1) f is pre-continuous mapping and X is a pre-connected biclosure space then Y is connected biclosure space.

2) f is continuous mapping and X is pre-connected biclosure space then Y is a connected biclosure space.

3) f is pre-open mapping and Y is pre-connected biclosure space then X is connected biclosure space.

4) f is open mapping and X is connected biclosure space then Y is pre-connected biclosure space.

Proof: 1. Let (Y, v_1, v_2) is a biclosure space and X is a pre-connected biclosure space then there exists a pre-continuous mapping fog: $X \rightarrow \{0, 1\}$ is constant. Consider a Pre-continuous mapping g: $Y \rightarrow \{0, 1\}$, given that f: $X \rightarrow Y$ is pre- continuous mapping and f is bijection so that g is also a constant mapping. Hence Y is connected biclosure space.

2. Given that X is a pre-connected biclosure space, i.e. $g: X \to \{0, 1\}$ pre-continuous mapping is constant. $f^{-1}: Y \to X$ is continuous bijection, so that $f^{-1}og: Y \to \{0, 1\}$ continuous mapping is constant. Hence Y is connected biclosure space.

3. Given that Y is pre-connected biclosure space i.e. g: $Y \rightarrow \{0, 1\}$ pre-continuous mapping is constant. Since f: $X \rightarrow Y$ is pre-open and bijection mapping so that continuous mapping fog: $X \rightarrow \{0, 1\}$ is constant. Hence X is connected biclosure space.

4. Given that X is connected biclosure space i.e. a continuous mapping g: $X \rightarrow \{0, 1\}$ is constant and $f^{-1}: Y \rightarrow X$ is open mapping so that it is a pre-open mapping then f^{-1} og: $Y \rightarrow \{0, 1\}$ is a pre-continuous constant mapping. Hence Y is a pre-connected biclosure space.

Theorem 4.7. A biclosure space (X, u_1, u_2) is pre-disconnected if and only if there exists a pre-continuous map f from X onto a discrete two point space $Y = \{0, 1\}$.

Proof: Given that biclosure space (X, u_1, u_2) is pre-disconnected i.e. there exists a precontinuous map f: $X \rightarrow \{0, 1\}$ is not constant and $f^{-1}\{0\} \neq \phi$. If a pre-continuous map f: $X \rightarrow \{0, 1\}$ is onto, so that mapping is not constant. Hence (X, u_1, u_2) is predisconnected biclosure space.

5. Conclusion

In this paper, the idea of semi-connectedness and pre-connectedness in biclosure space were introduced and studied some of their fundamental properties by theorems.

REFERENCES

- 1. J.M.Aarts and M.Mr.Šević, A bitopological view on co-compact extensions, *Topological Appl.*, 83 (1991) 1–16.
- 2. A.P.D.Balan and K.Chandrasekhar Rao, Semi-Pre-connected Spaces, *The Mathematics Education*, XLII (2008), 42(1-4), 192-6.
- 3. C.Boonpok, C₀-bi[×]cech spaces and C₁-bi[×]cech spaces, *Acta Mathematica Academiae Paedagogicae Ny iregyh aziensis* 25 (2009) 277-281
- 4. C.Boonpok and J.Khampakdee, Generalized closed sets in biclosure spaces, to appear.
- 5. E. Čech, Topological spaces, (revised by Z. Frolík, M. Katětov), (1966) Academia, Prague.

- 6. E.Čech, Topological spaces, Topological papers of Eduard Čech, Academia, Prague, (1968) 436–472.
- K.Rao Chandrasekha and R.Gowri, Regular generalized closed sets in Biclosure space, Jr. of Institute of Mathematics and computer Science, (Math. Ser.), 19(3) (2006) 283-286.
- 8. K.Chandrasekhara Rao, R.Gowri and V.Swaminathan, Cech weakly-open sets, *International Mathematical Forum*, 3(37) (2008) 1841-1851.
- 9. J.Chvalina, On homeomorphic topologies and equivalent set-systems, *Arch. Math. Scripta Fac. Sci. Nat. UJEP Brunensis,* XII 2 (1976) 107–116.
- J.Chvalina, Stackbases in power sets of neighbourhood spaces preserving the continuity of mappings, Arch. Math., Scripta Fac. Sci. Nat. UJEP Brunensis, XVII 2 (1981) 81–86.
- 11. P.Das, Note on some applications of semi-open sets, *Progress of Math*, 7 (1973) 33-44.
- 12. J. Deak, On bitopological spaces, I Stud. Sci. Math. Hungar., 25 (1990) 457-481.
- 13. R.Devi and M.Parimala, On $\alpha \psi$ -Closed Sets in Bi-Čech closure spaces, *Int. Journal of Math. Analysis*, 4(33) (2010) 1599 1606.
- 14. B. Dvalishvili, on some bitopological applications, Mat. Vesn. 42 (1990) 155-165.
- 15. J.C.Kelly, Bitopological spaces, Proc. London Math. Soc., 3(13) (1969) 71-79.
- 16. J.Khampakdee and C.Boonpok, Semi-open sets in biclosure spaces, *Discussions Mathematicae General Algebra and Applications*, 29 (2009) 181–201.
- 17. J.Khampakdee, Semi-open sets in closure spaces, Ph. D. Thesis, BRNO University of technology (2009), BRNO.
- 18. N.Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963) 36–41.
- 19. A.S.Mashhour and M.H.Ghanim, On closure spaces, *Indian J. Pure Appl. Math.*, 14 (1983) 680-691.
- 20. F.Riesz, Stetigkeitsbegriff und Abstrakte Mengenlehre, in Atti del IV Congress. Internationale di Mat., II (1909) 18-24.
- 21. J.Šlapal, Closure operations for digital topology, *Theoretic. Computer. Sci.*, 305 (2003) 457–471.
- 22. U.D.Tapi and B.A.Deole, Connectedness in closure space, *International J. of Math. Sci.* & *Engg. Appl.*, 7 (4) (2013) 147-150.
- 23. U.D.Tapi and B.A.Deole, Connectedness in bi-Čech closure space, submitted.
- 24. U.D.Tapi and B.A.Deole, Semi-connectedness and pre-connectedness in closure space, *International Journal of Mathematics and Computer Applications Research*, 4(4) (2014) 75-82.