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1. Introduction 
In 1963, bitopological space was introduced by Kelly [15] as triples (X, ℐ1, ℐ2) where X is 
non empty set and ℐ1 and ℐ2 are topologies defined on X. After that, a larger number of 
papers have been written to generalize the topological concept to a bitopological spaces, 
by Aarts and MrŠevi´ [1], Deak [12] and Dvalishvili [14]. The concept of biclosure space 
was introduced and studied by Boonpok and Khampakdee  [4] in 2010.  
        In 1966, Levine [18] introduced semi-open set and semi-continuous map in a 
topological space. The concepts of semi-open set and semi-continuous map in closure 
space were introduced by Khampakdee  [17]. The concept of pre-open set was introduced 
by Mashhour et.al. [19] in 1982. The concept of pre open set in closure space was 
introduced by Rao, Gowri and Swaminathan [8], and the concept semi-open sets and pre-
open sets was further generalized in biclosure space by Rao and Gowri [7] in 2006.  
Connectedness, semi-connectedness and pre-connectedness in closure space were 
introduced by our self [22, 24]. We have [23] generalized the concept of connectedness in 
biclosure space. Here we are using closure space in place of closure space for 
convenience. In this paper, we introduce semi-connectedness and pre-connectedness in 
biclosure space and study some of their fundamental properties. 
 
2. Preliminaries 
Definition 2.1. [3] Two maps u1 and u2 from power set of X to itself are called biclosure 
operators for X  if they satisfies the following properties: 
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1 2

1 2

1 1 1 2 2 2

(1) u  = , u  = ;

(2) A  u A, A u A, for all A X; 

(3)u (A B)= u A u B, u (A B)= u A u B, for all A X . 

φ φ φ φ
⊆ ⊆ ⊆

∪ ∪ ∪ ∪ ⊆
 

A structure 1 2(X, u , u ) is called a biclosure space.  
 
Definition 2.2. [13] A subset A in a biclosure space 1 2(X, k , k )  is said to be 

i

i

i

i

i k

k i

k i

i k

1. Semi open if A  k (int (A)), for all i = 1, 2.

2. Semi closed if int (k (A)) A, for all i = 1, 2.

3. Pre open if A  int  (k (A)), for all i = 1, 2.

4. Pre closed if k (int (A))  A, for all 

⊆

⊆

⊆

⊆ i = 1, 2. 

 

 
Definition 2.3. [16] Let 1 2(X, u , u ) and 1 2(Y, v , v )  are biclosure spaces and let  

i ∈ {1, 2}.Then a map 1 2 1 2f : (X, u , u )  (Y, v , v )→ is called: 

(i) i-open (respectively, i-closed) if the map i if: (X, u ) (Y, v )→ is open (respectively, 
closed). 
(ii) Open (respectively, closed) if f is i-open (respectively, i-closed) for all i ∈ {1, 2}. 
(iii) i-continuous if the map i if: (X, u ) (Y, v )→  is continuous for all i ∈ {1, 2}. 
(iv) continuous if f is i-continuous, for all i ∈ {1, 2}. 
 
Definition 2.4. [16] Let 1 2(X, u , u ) and 1 2(Y, v , v )  are biclosure spaces. A map  

1 2 1 2f : (X, u , u )  (Y, v , v )→  is called semi-continuous if -1f (G) is a semi-open subset 

of 1 2(X, u , u ) for every open subset G of 1 2(Y, v , v ).Clearly, if f is continuous, then f 
is semi-continuous. The converse need not be true. 
  
Definition 2.5. [16] Let 1 2(X, u , u ) and 1 2(Y, v , v )  be biclosure spaces. A map  

1 2 1 2f : (X, u , u )  (Y, v , v )→  is called pre-continuous if -1f (G)  is a pre-open subset of 

1 2(X, u , u ) for every open subset G of 1 2(Y, v , v ) . 
  
Definition 2.6. [24] A closure space (X, u) is said to be semi-connected if and only if any 
semi-continuous map f from X to the discrete space {0, 1} is constant. A subset A in a 
closure space (X, u) is said to be semi-connected if A with the subspace topology is semi-
connected closure space. 
 
Definition 2.7. [24] A closure space (X, u) is called pre-connected if and only if there 
exists a pre-continuous map f from X to the discrete space {0, 1} is constant. A subset A 
in a closure space (X, u) is said to be pre-connected if A with the subspace topology is 
pre-connected closure space. 
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3. Semi-connectedness in biclosure space 
Definition 3.1.  A biclosure space 1 2(X, u , u ) is called semi-connected if there exists a 
semi-continuous mapping f from X to discrete space {0, 1} is constant. 
 
Example 3.2. Consider a biclosure space 1 2(X, u , u ), where X = {a, b, c}, and u1 and u2 

are two closure operators which are defined by 

1

1 1 1

1 1 1 1 1

1 1

u : P(X) P(X) such that

u {b}=u {c}=u {b, c}={b, c}, 

u {a}=u {a, b}=u {a, c}=u {X}=X, u { }= .

Then underlying topology for (X, u ) is t (u ) = {{a}, {b}, {c}, {a, b}, {b, c}, { a, c}, X, }

φ φ
φ

→

Hence 1(X, u )  is a closure space. 

1

Open sets = {{a}, {b}, {c}, {a, b}, {a, c}, X, }.

SO sets of (X, u ) = {{a}, {b}, {c}, {a, b}, {a, c}, X, }.

φ
φ

 

2

2 2 2

2 2 2 2 2

2 2

And u : P(X) P(X) such that

u {a}={a, b}, u {b}={b, c}, u {c}= {c, a}, 

u {a, b}= u {b, c}= u {a, c}=X= u {X}, u { }= .

Then underlying topology for (X, u ) is t (u ) = {{a}, {b}, {c}, {a, b}, {b, c}, {a

φ φ

→

, c}, X, }φ
 

2

2

1

Hence (X, u ) is a closure space.

Open sets = {{a}, {b}, {c}, {a, b}, {b, c}, {a, c}, X, },

SO sets of (X, u ) = {{a}, {b}, {c}, {a, b}, {b, c}, {a, c}, X, },

Semi-open sets of biclosure space (X, u , 

φ
φ

2u ) are {{a}, {b}, {c}, {a, b}, {a, c}, X , }. φ
  

-1

-1

Let f: X {0, 1} is a semi-continuous mapping such that

f {1}={a}={b}={c}={a, b}={b, c}={a, c}=X.

f {0} = ,  i. e. f{a}=f{b}=f{c}=f{a, b}= f{b, c}=f{a, c}=f{X}=1,f{ }=0.φ φ

→
 

Here semi-continuous mapping f is constant. 
Hence 1 2(X, u , u ) is a semi-connected biclosure space. 
 
Example 3.3. Consider a biclosure space 1 2(X, u , u ), where X = {a, b, c, d}, and 1u and 

2u  are two closure operators which are defined by 1u : P(X) P(X)→ such that 

1 1 1

1 1 1

u {a}={a, b},u {b}={a, b}, u {c}={b, c}, 

u {d}={c, d}, u {X}=X, u { }= .φ φ
 

For all subsets A contained in X, let  
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                               1
1

,if A= ;
u (A)= 

{u ( ) : }, .a a A otherwise

φ φ
∪ ∈

 

Then underlying topology for 1 1(X, u ) is t (u ) = {{a}, {b}, {c}, {d}, X , }φ  

Hence 1(X, u )  is a closure space. 

1

2

2 2 2

2 2

Open sets = {{a}, {b}, {c}, {d}, X, }.

SO sets of (X, u ) = {{a}, {b}, {c}, {d}, X, }.

And u : P(X) P(X) such that

u {a} = {a, b, c}, u {b} ={b, c, d}, u {c}=  {c, a, d}, 

u {d} = {d, a, b},  u {X}= X, u

φ
φ

→

2{ }= .φ φ

 

For all subset A contained in X, let  

                            2
2

,if A= ;
u (A)= 

{u ( ) : }, .a a A otherwise

φ φ
∪ ∈

  

Then underlying topology for 2 2(X, u ) is t (u ) = {{a}, {b}, {c}, {d}, X , }φ  

Hence 2(X, u )  is a closure space. 

2

1 2

Open sets = {{a}, {b}, {c}, {d}, X, },

SO sets of(X, u ) = {{a}, {b}, {c}, {d}, X, },

Semi-open sets of biclosure space (X, u , u ) are {{a}, {b}, {c}, {d}, X, }. 

φ
φ

φ
 

Let f: X {0, 1}→ is a semi-continuous mapping such that 
-1

-1

f {1}={a}={b}={c}={d}={a, b}={b, c}={c, d }={d, a}=

{a, b, c}={b, c, d}={c, d, a}= {d, a, b} = X,

f {0} = . φ
 

Here semi-continuous mapping f is constant. 
Hence 1 2(X, u , u ) is a semi-connected biclosure space. 
   
Definition 3.4. A biclosure space 1 2(X, u , u ) is called semi-disconnected if there exists 
a semi-continuous mapping f from X to discrete space {0, 1} is surjective. 
 
Theorem 3.5. A biclosure space 1 2(X, u , u ) is semi connected if and only if every semi 
continuous mapping f from X into a discrete space Y= {0, 1} with at least two points is 
constant.  
Proof: Necessary: Let 1 2(X, u , u ) is a semi-connected biclosure space. Then there 
exists a semi continuous mapping f from the X into the discrete space Y= {0, 1}, for each
y Y∈ , 
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-1 -1 f {y} =  or X. If f {y} =  for all y Y,φ φ ∈  then f ceases to be a mapping. Therefore 
-1

0f {y } =X  for a unique 0y Y ∈ . This implies that 0f(X) = {y } and hence f is a 

constant mapping.  
Sufficiency: Let every semi continuous mapping f from X into a discrete space Y= {0, 1} 
is constant. Suppose U is a semi open set in a biclosure space 1 2(X, u , u ).If U ,φ≠ we 

will show that U=X . Otherwise, choose two fixed points 1y and 2y  in Y. Define 

f: X Y→  by  

                                                
1 ,

2

y ;
f(x)= 

,

ifx U

y otherwise

∈



  

 

Then for any open set V in Y, 

                                                

1

2-1

1 2

U, if Vcontains y ,

/ , if Vcontains y ,
f (V)=

, if Vcontains both y  and y ,

, .

only

X U only

X

otherwiseφ








 

In all the cases -1f (V)  is semi open in X. Hence f is not constant semi-continuous 
mapping. This is a contradiction to our assumption. This proves that the only semi–open 
subset of X is φ  and X. Hence 1 2(X, u , u ) is semi-connected biclosure space. 
 
Theorem 3.6. The following assertions are equivalent:  

1. 1 2(X, u , u ) is semi-connected biclosure space.  

2. The only subsets of X both semi-open and semi-closed are φ  and X.  

3.  No semi-continuous mapping f: X {0, 1}→ is surjective.  
 
Proof: [1] ⇒⇒⇒⇒ [2]  
Let 1 2(X, u , u ) is semi-connected biclosure space. Suppose G X⊂  is both semi-open 

and semi-closed such that C CG  and G X, then X= G G , Where Gφ≠ ≠ ∪  is 

complement of G in X. Hence Semi-continuous mapping f: X {0, 1}→ is not constant i. 

e. 1 2(X, u , u ) is not semi-connected biclosure space, which is a contradiction to our 

initial assumption. Hence the only subsets of X both semi-open and semi-closed are φ  
and X. 
  
[2] ⇒⇒⇒⇒ [3]  
Suppose the only subsets of X both semi-open and semi-closed are φ  and X. Let 

f: X {0, 1}→ is a semi-continuous surjection. Then -1 -1 f {0}  and f {0} X.φ≠ ≠ But 

{0} is both open and closed in {0, 1}.Hence -1f {0} is semi-open and semi-closed in X. 
This is a contradiction to our assumption. Hence no semi-continuous mapping 
f: X {0, 1}→ is surjective. 
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[3]⇒⇒⇒⇒ [1]  
Let no semi-continuous mapping f: X {0, 1}→ is surjective. If possible let biclosure 
space  

1 2(X, u , u ) is not semi-connected biclosure space. So X=A B,∪ A and B are also semi 
closed sets. Then  

A

1,if x A,
(x) = 

0,if x A.
χ

∈
 ∉

    

is semi-continuous surjection which is a contradiction to our initial assumption. Hence 
biclosure space 1 2(X, u , u ) is semi-connected biclosure space.  
  
Theorem 3.7. The semi-continuous image of a semi-connected biclosure space is semi-
connected biclosure space.  
Proof: Let biclosure space 1 2(X, u , u ) is a semi-connected biclosure space. Consider a 

semi-continuous mapping f: X f(X)→ is surjective. If f(X) is not semi-connected 

biclosure space, there would be a semi-continuous surjection g: f(X) {0, 1}→ so that 

the composite function g o f: X {0, 1}→ would also be a semi-continuous surjection, 

which is a contradiction to semi-connectedness of biclosure space 1 2(X, u , u ). Hence 
f(X) is a semi-connected biclosure space. 
 
4. Pre-Connectedness in Biclosure Space: 
Definition 4.1. A biclosure space 1 2(X, u , u ) is called pre-connected if there exists a 
pre-continuous mapping f from X to discrete space {0, 1} is constant. 
 
Example 4.2. Consider a biclosure space 1 2(X, u , u ), where X = {a, b, c}, and 1u and 

2u  are two closure operators which are defined by 

1

1 1 1

1 1 1 1 1

1 1

u : P(X) P(X) such that

u {b}=u {c}=u {b, c}={b, c}, 

u {a}=u {a, b}=u {a, c}=u {X}=X, u { }= .

Then underlying topology for (X, u ) is t (u ) = {{a}, {b}, {c}, {a, b}, {b, c}, { a, c}, X, }

φ φ
φ

→

 
Hence 1(X, u )  is a closure space. 
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1

2

2 2 2

2 2 2

Open sets = {{a}, {b}, {c}, {a, b}, {a, c}, X, }.

PO sets of (X, u ) = {{a}, {a, b}, {a, c}, X, }.

And u  : P(X) P(X) such that

u {a}={a, b}, u {b}={b, c}, u {c}= {c, a}, 

u {a, b}= u {b, c}= u {a, c}=X

φ
φ

→

2 2

2 2

= u {X}, u { }= .

Then underlying topology for (X, u ) is t (u ) = {{a}, {b}, {c}, {a, b}, {b, c}, { a, c}, X, }

φ φ
φ

Hence 2(X,u )  is a closure space. 

2

1 2

Open sets = {{a}, {b}, {c}, {a, b}, {b, c}, {a, c}, X, },

PO sets of (X, u ) = {{a}, {b}, {c}, {a, b}, {b, c}, {a, c}, X, },

Pre-open sets of biclosure space (X, u , u ) are {{a}, {a, b}, {a, c}, X, 

φ
φ

φ

-1

-1

}. 

Let f: X {0, 1} is a pre-continuous mapping such that

f {1}={a}={b}={c}={a, b}={b, c}={a, c}=X,

f {0} = .φ

→
 

Hence pre-continuous mapping f is constant. 
Hence 1 2(X, u , u )is a pre-connected biclosure space. 
 
Example 4.3. Consider a biclosure space 1 2(X, u , u ), where X = {a, b, c, d}, and 1u and 

2u  are two closure operators which are defined by 

1

1 1 1

1 1 1

u : P(X) P(X) such that

u {a}={a, b},u {b}={a, b}, u {c}={b, c}, 

u {d}={c, d}, u {X}=X, u { }= .φ φ

→
 

For all subsets A contained in X, let 1
1

,if A= ;
u (A)= 

{u ( ) : }, .a a A otherwise

φ φ
∪ ∈

 

Then underlying topology for 1 1(X, u ) is t (u ) = {{a}, {b}, {c}, {d}, X , }φ  

Hence 1(X, u )  is a closure space. 

1

Open sets = {{a}, {b}, {c}, {d}, X, }.

PO sets of (X, u ) = {{a}, {b}, {c}, {d},  X, }.

φ
φ

 

2

2 2 2

2 2 2

And u : P(X) P(X) such that

u {a}={a, b, c}, u {b}={b, c, d}, u {c}= {c , a, d}, 

u {d}= {d, a, b},  u {X}=X, u { }= .φ φ

→
 

For all subsets A contained in X, let 
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2
2

,if A= ;
u (A)= 

{u ( ) : }, .a a A otherwise

φ φ
∪ ∈

  

Then underlying topology for 2 2(X, u ) is t (u ) = {{a}, {b}, {c}, {d}, X , }φ  

Hence 2(X, u )  is a closure space. 

2

1 2

Open sets are {{a}, {b}, {c}, {d}, X, },

PO sets of (X, u ) = {{a}, {b}, {c}, {d}, X, },

Pre-open sets of biclosure space (X, u , u ) are {{a}, {b}, {c}, {d}, X, }.

φ
φ

φ
 

  
Let f: X {0, 1}→ is a pre-continuous mapping such that 

-1

-1

f {1}={a}={b}={c}={d}={a, b}={b, c}={c, d }={d, a}={a, b, c}=

{b, c, d}={c, d, a}= {d, a, b}=X.

f {0} = , φ
 

 
Hence pre-continuous mapping f is constant. 
Then 1 2(X, u , u ) is a pre-connected biclosure space.  
 
Definition 4.4. A biclosure space 1 2(X, u , u ) is called pre-disconnected biclosure space 
if and only if any pre-continuous map f from X to the discrete space {0, 1} is surjective.  
  
Theorem 4.5. If i{A  : i }∈ ∧  is a family of pre-connected biclosure subsets of Pre-

connected biclosure space 1 2(X, u , u ), then iA∪  is also a pre-connected biclosure subset 

of 1 2(X, u , u ),where Ʌ is any index set. 

Proof: Each iA , i ∈∧  is a pre-connected biclosure subset of pre-connected biclosure 

space 1 2(X, u , u ) so there exists pre-continuous mapping i if : A {0, 1}→ is constant. 

Let a pre-continuous mapping if: A {0, 1}∪ → is not constant, -1 if {1} A≠  which is a 

contradiction to each Ai is pre-connected subsets of 1 2(X, u , u ), i.e. pre-continuous 

mapping f is constant. Hence iA∪  is pre-connected biclosure space. 
 
Theorem 4.6. Let 1 2(X, u , u )and 1 2(Y, v , v )  are two biclosure spaces and f: X Y→  
is a bijection. Then 
1) f is pre-continuous mapping and X is a pre-connected biclosure space then Y is 
connected  biclosure space.  
2) f is continuous mapping and X is pre-connected biclosure space then Y is a connected 
biclosure space.  
3) f is pre-open mapping and Y is pre-connected biclosure space  then X is connected 
biclosure space.  
4) f is open mapping and X is connected biclosure space then Y is pre-connected 
biclosure space. 



Semi-Connectedness and Pre-Connectedness in Biclosure Space 

123 

 

Proof: 1. Let 1 2(Y, v , v ) is a biclosure space and X is a pre-connected biclosure space 

then there exists a pre-continuous mapping fog: X {0, 1}→ is constant. Consider a  

Pre-continuous mappingg: Y {0, 1}→ , given that f: X Y→  is pre- continuous 
mapping and f is bijection so that g is also a constant mapping. Hence Y is connected 
biclosure space.  
 
2. Given that X is a pre-connected biclosure space, i.e. g: X {0, 1}→ pre-continuous 

mapping is constant. -1f :Y X→  is continuous bijection, so that -1f og: Y {0, 1}→
continuous mapping is constant. Hence Y is connected biclosure space. 
 
3. Given that Y is pre-connected biclosure space i.e. g: Y {0, 1}→ pre-continuous 

mapping is constant. Since f: X Y→  is pre-open and bijection mapping so that 
continuous mapping fog: X {0, 1}→ is constant. Hence X is connected biclosure space. 
 
4. Given that X is connected biclosure space i.e. a continuous mapping g: X {0, 1}→ is 

constant and -1f : Y X→  is open mapping so that it is a pre-open mapping then 
-1f og:Y {0, 1}→ is a pre-continuous constant mapping. Hence Y is a pre-connected 

biclosure space. 
 
Theorem 4.7. A biclosure space 1 2(X, u , u ) is pre-disconnected if and only if there 
exists a pre-continuous map f from X onto a discrete two point space Y = {0, 1}. 
Proof: Given that biclosure space 1 2(X, u , u ) is pre-disconnected i.e. there exists a pre-

continuous map f: X {0, 1}→ is not constant and -1f {0} φ≠ .If a pre-continuous map 

f: X {0, 1}→ is onto, so that mapping is not constant. Hence 1 2(X, u , u )  is pre-
disconnected biclosure space.  
 
5. Conclusion  
In this paper, the idea of semi-connectedness and pre-connectedness in biclosure space 
were introduced and studied some of their fundamental properties by theorems.  
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