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1. Introduction
The theory of fuzzy sets was introduced by Zaddhrj8.965. Many authors have
introduced the concept of fuzzy metric space inirttevn ways. George and
Veeramani [2] modified the notion of fuzzy metripaxe with the help of t-norms.
Since then, many authors studied the existing tesiml metric spaces to fuzzy
metric spaces using t-norm. To mention a few, 8faaf7] introduced the concept
of fuzzy 2-metric spaces; Cho [1] proved a commixed point theorem for four
mappings in fuzzy metric spaces and Han [3] extdrttie above results to fuzzy 2-
metric spaces. Further Priyanka and Malviya [6]abiid some common fixed point
theorem for occasionally weekly compatible mappmduzzy 2-metric spaces.
Ming [4] was the first to study the fuzzy metricagie using fuzzy points. In
this paper, we extend the study to fuzzy 2-metgaces using fuzzy points. Also,
we introduce the concept of fuzzy 2-metric spacesam extension of fuzzy metric
spaces studied by Ming [4] which are essentiallkiad of quasi-2-metrics in
general topology. Some results on fuzzy 2-metpaces are obtained as special
cases, some well known results of metric spaces @kntor’s intersection theorem
and Baire’s category theorem for fuzzy metric spga@es proved.

2. Preliminaries
Let X be a nonempty set, | = [0,1] be the unit irtd. The pair (xo), xXOX, aOl is

called a fuzzy point in X, denoted B9 or P(x,a), sometimes simply P. Fuzzy
point Pj““ is called the dual point o], usually the dual point of P is denoted by
P*. The set of all fuzzy points in X is denoted I(X) = { P{' : xUOX, a0[0,1]}.
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For any fuzzy set AI*, the collection of all mappings of X into I, weysshat
P! DA = a<A(x) or A(x) =1 andP? DA = a< A(x) and A(x)#0.

Let P7, PfD IP-(X) be fuzzy points, then we say thBf sPy'3 = X =Yy, 0a<B and
P < PyI3 = X =y,a<B. Any two fuzzy pointsP, Pf are said to be comparable if
P¥< PP or PP<P? .

Definition 2.1. ([5]) Let X be a nonempty set. A real valued functgpdefined on
XxXxX satisfying the following:
(i) There are three points a, b[IJX such thatp(a, b, c¥O0.
(i p(a, b, c) =0if and only if atleast two of theeakrpoints are equal.
(iii) p(a, b, c)=p(a, c, b) =p(b,c,a)=.....
(iv) p(a, b, c)<p(a, b, d) +p( a, d, c)+p(d, b, ¢) is called a 2-metric on X
and (X, p) is called a 2-metric spacp.is non negative and symmetric
about the three variables a, b, c.

3. Fuzzy 2-metric
In this section, first we shall generalize the d&fon of 2-metric space and fuzzy
metric space to fuzzy 2-metric space in the follogvivay.

Definition 3.1. A fuzzy 2-metric for a set X is a mapping e(R)x IP-(X)x
IP.(X) - [0, O) satisfying the following axioms: For any,f, Ps;, P, O IP.(X).

1. e(P, P, Py)=0if atleast 2 of the three fuzzy points are cangble.
2' e(Pll PZI P3) < e(RL! PZ! P4) t+e (H.l P4l P3)+e(P4l PZ! P3)

3. e(Pl, Pz, Pg) = e(Pl, P3*, Pz*) = e(Pz*, Pg*, Pl*) = ...

4. e(P, P, P3)>0 if no two of the three points are comparable.

We call (X, e) a fuzzy 2-metric space. In the abaefinition if (4) is
omitted, then e is called a fuzzy pseudo-2-metmnd X, e) a fuzzy pseudo-2-
metric space, if (3) and (4) are omitted, then edled a fuzzy quasi-2-metric and
(X , e) a fuzzy quasi-2-metric space. Essentidhe fuzzy 2-metric is a kind of
special quasi- 2-metrics. Example: 3.2

Let X={0, 1, 1/2, 1/3, . . . . }. Define d: Xx¥X - [0,00)
1, if x, y, zaredistinct and {1/ n, 1/ n+ 1} O{x, vy, z}
by d(x, y, z) = for some positive integer n
0, otherwise
Then d is a 2- metric on X. Define the fuzzy 2-nefor X as
e: IP(X)x IP«(X)x IP«(X) - [0, O)
given by
e(P? ,Pf PY)=Max {d(x, y, z),y - B- a}
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Definition 3.3. Let e be a fuzzy quasi-2-metric on X ang P IP-(X), 0>0. The
fuzzy set B(B, 0) = O{Py: P.00 IP(X) and e(B, P, P) <0, for all PO IP:(X)} is
called a fuzzyd-open ball with centre fand radiug].

Lemma 3.4.Let (X, e) be a fuzzy quasi-2-metric space and B[P be a fuzzy-
open ball of B, then for any FIB(P,,0J) there is a fuzzy &-open ball B(R, 3) of
P: such that B(E, d)IB(P,, O).

Proof: Define d = 1/2 [O-e(R, P, P)] and consider B@Pd). Then we claim that
B(P,, 8) O B(P,, O), for if P, O B(Py, &) then e(k, P, P) < for all PO IP«(X) =
e(P, P, P)) <d. Now by axiom (2), e® P, P)<e(®, P, P) + e(R, P, P) +
e(P, P, P) <dte(R, P, P) +0 = 25 +e(R, P, P) &1 therefore e(f P, P) <0O.
Thus B(R, 6)00 B(P,, 0).

As in the case of fuzzy metric space [4] we caovshhat the collection of
all fuzzy open balls will generate a topology farzty-2-metric space. Let us
denote the topology induced by the fuzzy pseudoezrim by T. For RO IP«(X),
0>0,

B(Po, O) = O{Py:P.0 IP(X) and e(R, P, Px0O, O PO IP(X)} is called a
fuzzy O- closed ball with centre ¢Pand radiusd. Usually we call B(F, O) the
fuzzy O-open ball of B and BP,, ) the fuzzyO-closed ball of B In a fuzzy
pseudo-2-metric space every fuzZzZyopen ball is a fuzzy open set and every fuzzy
O-closed ball is a fuzzy closed set.

Definition 3.5.1f A is a Fuzzy set, then the closure of A, demots A is defined
as {R[ IP-(X) such that each fuzzy open set containipgnersects A}.

4. Convergence, compactness for fuzzy pseudo 2-mietspaces
In [2], a detailed study on convergence, compadfes fuzzy metric spaces has
been made by A.George and P.Veeramani. In thisasgave shall generalize these
concepts for sequence in fuzzy pseudo- 2-metricepa

A sequence {R:} in a fussy pseudo-2-metric space (X, e) converges
fuzzy point R O IP«(X), if and only if, for >0, there exists ¢gilN such that R,
OB(Pyx, O); for all r= n,,.

Theorem 4.1.Let (X, e) be a fuzzy pseudo-2-metric space @ndbe the topology
induced by the fuzzy pseudo-2-metric, then a segei§Bx,} in IP-(X) converges to
Px in IP.(X) if and only if for each1>0, e(R, Px, P)-0 as n- 0 for all PO IP-(X).

Proof: Suppose {R.} - Px, then forO>0, there existsgilN such that R, OB(Px,
0), for all n=n,. This implies e(R,, Px, P) <J for all n=ny and for all 1 IP«(X).
Hence, e(R,, Px, P) —0<J. Thus e(R., Px, P) - 0 as n-0, for eachJ>0
conversely, if e(R. Px, P)-0 n- 0O and for all P IP.(X). Then for eachl>0,
there exists §IN such that e(R, Px, P) —0 €1 O n=ny. which implies e(R., Pk,
P)<O for all = ny. Therefore R, OB(Px, O), for all = ng. Py, - Py in IP:(X).
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Definition 4.2. A sequence {R,} in a fuzzy pseudo-2-metric space (X,e) is a
cauchy sequence if and only|ify; €(Rum, Pxn, P)=0 for all RIIP-(X).

n- o

A fuzzy pseudo-2-metric space, in which every causbquence converges is called
a complete fuzzy pseudo-2-metric space.

Definition 4.3. A sequence {R.} in a fuzzy pseudo-2-metric space (X,e) is said to
be a F-cauchy sequence if and only if for e@lctd, ther exist §LIN such that e(R,
Pxm, P)<O for all n,m=ny and for all RI1IP:(X).

Theorem 4.4.Let {Px,} be a F - cauchy sequence in a fuzzy pseudo-2imspace
(X, e). Then {R.} is convergent if it has a covergent subsequence.

Proof: Let {P

Xnk} be a convergent subsequence ofxJPand assume that

{Pxnk} converges to £in IP(X) as k- 0. LetO>0 be given. Since {R} is a F-

cauchy sequence, there exist8IN such that e(&, Pxm, P) <O for all m, n=n, and
for all PO IP(X). Since, {Pxnk} converges to £ there existsN such that

e(PXnk , Px, P)<d for all n 2 j. Therefore, for all n, gmax (n, j), e(Rn, Px, PX

e(Pn, Pk, PXnk )+e(Rn, PXnk’ P)+ ePXnk, Px, P) <1. Hence {R,} converges to R

as n- [0 Hence, the theorem.

5. Analogue of cantor's intersection theorem, Bairs theorem, uniform
boundedness principle

Definition 5.1.Let (X, e) be a fuzzy pseudo-2-metric space. Thecollection of
sets {R}no is said to have fuzzy diameter zero if and onlthiére exists Ol such
that e(R, R, P,) <O for all B, R, R OF,.

Definition 5.2.A non empty subset F of fuzzy pseudo-2-metric epéX, e) has
fuzzy diameter zero if and only if F is a singletset.

Theorem 5.3. (Cantor’'s intersection theorem)A necessary and sufficient
condition that a fuzzy pseudo-2-metric space (Xpe&xomplete is that every nested

sequence of nonempty closed s{aIF;;} ::1 with fuzzy diameter zero have nonempty
intersection.

Proof: Let (X, e) be the given fuzzy pseudo-2-metric spand suppose that every
nested sequence of nonempty closed {ﬁs} ::1 with fuzzy diameter zero have
nonempty intersection.

We have to prove that (X, e) is complete. LekfPbe a F - Cauchy
sequence in X. TakeA {Pxn, Pxns1, Pxns2, . . . .} and F= A, then we claim that
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{Fn} has fuzzy diameter zero. Sincey R is a F - cauchy sequence, there exists n
0N, such that e, Pxm, q) <U for all m, n=n, and for all ¢ IP<(X). Therefore,

e(R, B, q) (5.1)
forall P, B, and ¢JA, . Let R PO F, . Then there exist sequeno%& } and

{Pvn} in A, such that{Pun} converges to Pand {Pvn} converges to P Hence
P, OB(P, 0) andP, OB(P,, 0), for sufficiently large n. Hence

e(P, , R.P)<0, e(P, , P, P)<U (5.2)

for all P. Now, e(R P, P) < e(R, R, P)+e(R, P, P) +e(R, R, R). By repeated
application of axiom (2) in the definition of fuzZ+metric space and using (5.1)
and (5.2). We get, ¢(PPR, P)<0O for all B, P, P, O Fno. Thus {R} has fuzzy

diameter zero. Hence by hypotheﬂ'xs1 F. is nonempty. TakeDerl F.. Then for

>0, there exists #iIN such that e(R, Px, P)<1 for all n=n,. Therefore, for each
>0, e(Rn, Px, P) converges to zero as-ml. Hence {R.} converges to R.
Therefore, (X, e) is complete. Conversely, suppibse (X, e) is a complete fuzzy

(-]

pseudo-2-metric space ar{an} is a nested sequence of nonempty closed sets

n=1
with fuzzy diameter zero. LetyP O F, n=1, 2, . .. . Since {f has fuzzy
diameter zero, fofJ>0, there existsgiUN such that e(R R, P) <J, for all B, R,
PO Fno . Therefore, e(R\, Pxm, P)<U for all n, m= ny. Since, R, O F, DFn0 and R,

0 Fy O FnO , {Pxn} is a F-cauchy sequence. But (X,e) is a compfatezy metric
space and hence {B converges to . Now for each fixed ”ka OF, for all k=

n. Therefore, JEDI_:n = F,, for every n, and henceg ] ﬂan- Hence the theorem.
=

Remark 5.4. The element O ﬁan in the above theorem is unique. For if there
=

are two elements,PR, [ man. Since {Fn}:_l has fuzzy diameter zero, for each
- =

fixed O = 1/n>0, e(R R, P,) <l/n for all R, R, P, OF, and for each n. This
implies e(R, P, P,) - 0 as n- U and hence P= PR,.

Theorem 5.6. (Baire’'s Theorem)Let (X, €) be a complete fuzzy pseudo-2-metric
space. Then the intersection of countable numbeense open sets is dense.

Proof: Let B, be a nonempty open subset of X angd D,, D3, . . ., be dense open
sets in X. Since Dis dense in X, BnD4, #¢. Let B OBonD,, since B nD; is

open, there existl;>0, such that B(PU; O By nD;. Choose[ﬁ <[; such that
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B(P,, (})0BonD,. Let B=B(P,, [}) since B is dense in IRX). B;nD, #¢. Let
P, O BinD,. Since BnD, is open, there exidll, >0 such that B(R 0,)00B:nD,.
Choosel} <[, such that B(R [};) 0B1n D..

Let B, = B(P;, E&) proceeding similarly by induction. We can findPgd
B.,.. nD,. Since B..nD, is open, there exidil,>0 such that B(R 0, 0B,.1n D,.
Choose[} <0, such that B(R [})0 B,.1nD,. Let B, = B(P,, [}). Now we claim
that {P,} is a F - cauchy sequence. For givier0, choose #iIN such that for Bng
and nen, we have, e(R, P, P)<0. Thus {R} is a F-cauchy sequence. Since (X,e)
is complete P— P for some P in IF¥X). But kaD B(Pn, Eﬁ) for all k=n and we

know that every closed ball is a closed set. HeRESB(P,, P,f) 0B,.1.nD,, for all

n. Therefore, Bn [ nan];t(p. Hence, nan is dense in X. Hence the theorem
n=. n=

Remark 5.7. A complete fuzzy pseudo-2-metrix cannot be represstias the union
of a sequence of nowhere dense sets and hencedt if first category.

Theorem 5.8. (Uniform Boundedness Principle)Let F be a collection of real
continuous functions f defined on a complete fupsgudo-2-metric space (X, €)
and suppose for each[PIP:(X) there exists a real no. K{Psuch that f(P< K(Px),
for all f OF. Then there exists an open ball S = 8@, P, O IP:(X), O >0 and a
constant k such that f(P<k, for all PO S, fOF.

Proof: For each fOF, and each KN, define&(k, f) = {Px : f(P)<k}. Now f is
continuous and hence its complement,{ #P,)>k} is open. Thereforef(k, f) is
closed. Defineg, = n{ &(k, f): fOF}, & being an intersection of closed sets is
closed. Now we claim X& {&, k=1, 2, 3,...}. Forif PIIP(X). Then, f(R)<
k(Py), for all f OF, and hence there exists an integgy &uch that f(B < kp,, for all
f. Hence EDEKPX' Hence our claim, since (X, e) is a complete fupsgudo-2-

metric space, by cantor’s intersection theorers ifisecond category.

Hence, atleast one of the sets, &ayis not nowhere dense. TherefoE;—:q, contain

an open ball S=B@0), P, O IP«(X). O >0 such that &I Ek =& Therefore, if R
s, then ROE, and hence f(P < k, for all fO F. Hence the theorem.
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