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Abstract. Fuzzy metric spaces, which are essentially a kind of Quasi-2-metrics in 
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1.  Introduction 
The theory of fuzzy sets was introduced by Zadeh [8] in 1965.  Many authors have 
introduced the concept of fuzzy metric space in their own ways. George and 
Veeramani [2] modified the notion of fuzzy metric space with the help of t-norms. 
Since then, many authors studied the existing results in metric spaces to fuzzy 
metric spaces using t-norm. To mention a few,  Sharma [7]  introduced the concept 
of fuzzy 2-metric spaces; Cho [1] proved a common fixed point theorem for four 
mappings in fuzzy metric spaces and Han [3] extended the above results to fuzzy 2-
metric spaces. Further Priyanka and Malviya [6] obtained some common fixed point 
theorem for occasionally weekly compatible mapping in fuzzy 2-metric spaces. 

Ming [4] was the first to study the fuzzy metric space using fuzzy points. In 
this paper, we extend the study to fuzzy 2-metric spaces using fuzzy points. Also, 
we introduce the concept of fuzzy 2-metric spaces as an extension of fuzzy metric 
spaces studied by Ming [4] which are essentially a kind of quasi-2-metrics in 
general topology.  Some results on fuzzy 2-metric spaces are obtained  as special 
cases, some well known results of metric spaces like Cantor’s intersection theorem 
and Baire’s category theorem for fuzzy metric spaces are proved. 
 
2. Preliminaries 
Let X be a nonempty set, I = [0,1] be the unit interval.  The pair (x, α), x∈X, α∈I is 

called a fuzzy point in X, denoted by Px
αααα  or P(x, α), sometimes simply P.  Fuzzy 

point Px
1−−−−αααα  is called the dual point of Px

αααα , usually the dual point of P is denoted by 

P*.  The set of all fuzzy points in X is denoted by IP*(X) = { Px
αααα : x∈X, α∈[0,1]}.  
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For any fuzzy set A∈IX, the collection of all mappings of X into I, we say that 

Px
αααα ∈A⇔α<A(x) or A(x) =1 and Px

αααα ∈A  ⇔α≤ A(x) and A(x) ≠0. 

Let Px
αααα , Py

ββββ ∈ IP*(X) be fuzzy points, then we say that Px
αααα ≤ Py

ββββ  ⇔ x = y, α≤β and 

Px
αααα < Py

ββββ ⇔ x = y, α<β.  Any two fuzzy points Px
αααα , Py

ββββ  are said to be comparable if 

Px
αααα ≤ Py

ββββ  or Py
ββββ ≤ Px

αααα  . 

Definition 2.1. ([5]) Let X be a nonempty set.  A real valued function ρ defined on 
XxXxX satisfying the following: 

(i)  There are three points a, b, c ∈X such that ρ(a, b, c)≠0. 
(ii)  ρ(a, b, c) = 0 if and only if atleast two of the three points are equal. 
(iii)  ρ(a, b, c)= ρ(a, c, b) = ρ( b, c, a) = . . . . .  
(iv) ρ(a, b, c) ≤ ρ(a, b, d) + ρ( a, d, c)+ ρ(d, b, c)  is called a 2-metric on X 

and (X, ρ) is called a 2-metric space. ρ is non negative and symmetric 
about the three variables a, b, c.   

 
3. Fuzzy 2-metric 
In this section, first we shall generalize the definition of 2-metric space and fuzzy 
metric space to fuzzy 2-metric space in the following way. 

Definition 3.1. A fuzzy 2-metric for a set X is a mapping e:IP*(X)x IP*(X)x 
IP*(X)→[0, ∝) satisfying the following axioms:  For any P1, P2, P3, P4 ∈ IP*(X). 

1. e(P1, P2, P3)=0 if atleast 2 of the three fuzzy points are comparable. 
2. e(P1, P2, P3) ≤ e(P1, P2, P4) + e (P1, P4, P3)+e(P4, P2, P3). 
3. e(P1, P2, P3) = e(P1, P3*, P2*) = e(P2*, P3*, P1*) = . . . .  
4. e(P1, P2, P3)>0 if no two of the three points are comparable. 

 We call (X, e) a fuzzy 2-metric space.  In the above definition if (4) is 
omitted, then e is called a fuzzy pseudo-2-metric and (X, e) a fuzzy pseudo-2-
metric space, if (3) and (4) are omitted, then e is called a fuzzy quasi-2-metric and 
(X , e) a fuzzy quasi-2-metric space.  Essentially, the fuzzy 2-metric is a kind of 
special quasi- 2-metrics. Example: 3.2 

 Let X = {0, 1, 1/2, 1/3, . . . . }.  Define d: XxXxX→[0,∝)  

by d(x, y, z) = 

1,  if x,  y,  z are distinct and {1 / n,  1 / n+ 1} {x,  y,  z}  

                                           for some positive integer n

0,  otherwise

⊂







 

Then d is a 2- metric on X. Define the fuzzy 2-metric for X as  

e: IP*(X)x IP*(X)x IP* (X)→[0, ∝) 

given by  

e(Px
αααα ,Py

ββββ Pz
γγγγ )=Max {d(x, y, z), γ - β- α} 
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Definition 3.3. Let e be a fuzzy quasi-2-metric on X and P0 ∈ IP*(X), ∈>0.  The 
fuzzy set B(P0, ∈) = ∪{P1: P1∈ IP*(X) and e(P0, P1, P) < ∈, for all P∈ IP* (X)} is 
called a fuzzy ∈-open ball with centre P0 and radius ∈. 

Lemma 3.4. Let (X, e) be a fuzzy quasi-2-metric space and B(P0, ∈) be a fuzzy ∈-
open ball of P0, then for any P1∈B(P0,∈) there is a fuzzy    δ-open ball B(P1, δ) of 
P1 such that B(P1, δ)⊂B(P0, ∈). 

Proof: Define δ = 1/2 [∈–e(P0, P1, P)] and consider B(P1, δ).  Then we claim that 
B(P1, δ) ⊂ B(P0, ∈), for if P2 ∈ B(P1, δ) then e(P1, P2, P) <δ for all P∈ IP*(X) ⇒ 
e(P1, P2, P0) < δ.   Now by axiom (2), e(P0, P2, P) ≤ e(P0, P2, P1) + e(P0, P1, P) + 
e(P1, P2, P) < δ+e(P0, P1, P) + δ = 2δ +e(P0, P1, P) =∈  therefore  e(P0, P2, P) < ∈.  
Thus B(P1, δ)⊂ B(P0, ∈). 

 As in the case of fuzzy metric space [4] we can show that the collection of 
all fuzzy open balls will generate a topology for fuzzy-2-metric space.  Let us 
denote the topology induced by the fuzzy pseudo-2-metric by T.   For P0∈ IP*(X), 
∈>0,  

 B(P0, ∈) = ∪{P1:P1∈ IP*(X) and e(P0, P1, P)≤∈, ∀ P∈ IP*(X)} is called a 
fuzzy ∈- closed ball with centre P0 and radius ∈.  Usually we call B(P0, ∈) the 
fuzzy ∈-open ball of P0 and B(P0, ∈) the fuzzy ∈-closed ball of P0.  In a fuzzy 
pseudo-2-metric space every fuzzy ∈-open ball is a fuzzy open set and every fuzzy 
∈-closed ball is a fuzzy  closed set. 

Definition 3.5. If A is a Fuzzy set, then the closure of A, denoted as A  is defined 
as {Px∈ IP*(X) such that each fuzzy open set containing Px intersects A}. 

4. Convergence, compactness for fuzzy pseudo 2-metric spaces 
In [2], a detailed study on convergence, compactness for fuzzy metric spaces has 
been made by A.George and P.Veeramani.  In this section, we shall generalize these 
concepts for sequence in fuzzy pseudo- 2-metric spaces. 
 A sequence {PXn} in a fussy pseudo-2-metric space (X, e) converges to a 
fuzzy point PX ∈ IP*(X), if and only if, for ∈>0, there exists n0∈N such that PXn 
∈B(PX, ∈); for all n≥ n0. 

Theorem 4.1. Let (X, e) be a fuzzy pseudo-2-metric space and T  be the topology 
induced by the fuzzy pseudo-2-metric, then a sequence {PXn} in IP* (X) converges to 
PX in IP*(X) if and only if for each ∈>0, e(PXn, PX, P)→0 as n→∝ for all P∈ IP*(X). 

Proof: Suppose {PXn} →PX, then for ∈>0, there exists n0∈N such that PXn ∈B(PX, 
∈), for all n≥n0.  This implies e(PXn, PX, P) <∈ for all n≥n0 and for all P∈ IP*(X).  
Hence, e(PXn, PX, P) – 0<∈.   Thus e(PXn, PX, P) → 0 as n→∝, for each ∈>0 
conversely, if e(PXn, PX, P)→0 n→∝ and for all P∈ IP* (X).  Then for each ∈>0, 
there exists n0∈N such that e(PXn, PX, P) –0 <∈ ∀ n≥n0. which implies e(PXn, PX, 
P)<∈ for all n≥ n0.  Therefore  PXn ∈B(PX, ∈), for all n≥ n0.  PXn →Px in IP*(X). 
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Definition 4.2. A sequence {PXn} in a fuzzy pseudo-2-metric space (X,e) is a 
cauchy sequence if and only if 

n
lim

→∞
 e(PXm, PXn, P)=0 for all P∈IP*(X). 

A fuzzy pseudo-2-metric space, in which every cauchy sequence converges is called 
a complete fuzzy pseudo-2-metric space. 

Definition 4.3. A sequence {PXn} in a fuzzy pseudo-2-metric space (X,e) is said to 
be a F-cauchy sequence if and only if for each ∈>0, ther exist n0∈N such that e(PXn, 
PXm, P)<∈ for all n,m ≥n0 and for all P∈IP*(X). 

Theorem 4.4. Let {PXn} be a F - cauchy sequence in a fuzzy pseudo-2-metric space 
(X, e).  Then {PXn} is convergent if it has a covergent subsequence. 

Proof: Let { }PXnk
 be a convergent subsequence of {PXn} and assume that 

{ }PXnk
converges to PX in IP*(X) as k→∝.  Let ∈>0 be given.  Since {PXn} is a F-

cauchy sequence, there exists n0∈N such that e(PXn, PXm, P) <∈ for all m, n ≥n0 and 

for all P∈ IP*(X).  Since, { }PXnk
 converges to PX, there exists j∈N such that 

e(PXnk
, PX, P)<∈ for all nk ≥ j.  Therefore, for all n, nk≥max (n0, j), e(PXn, PX, P)≤ 

e(PXn, PX, PXnk
)+e(PXn, PXnk

, P)+ e(PXnk
, PX, P) <∈. Hence {PXn} converges to PX 

as n→∝  Hence, the theorem. 

 

5. Analogue of cantor’s intersection theorem, Baire’s theorem, uniform 
boundedness principle  

Definition 5.1. Let (X, e) be a fuzzy pseudo-2-metric space. Then a collection of 
sets {Fn} n∈I  is said to have fuzzy diameter zero if and only if there exists n∈I such 
that e(Px, Py, Pz) <∈ for all Px, Py,      Pz ∈Fn. 

Definition 5.2. A non empty subset F of fuzzy pseudo-2-metric space (X, e) has 
fuzzy diameter zero if and only if  F is a singleton set. 

Theorem 5.3. (Cantor’s intersection theorem) A necessary and sufficient 
condition that a fuzzy pseudo-2-metric space (X, e) be complete is that every nested 

sequence of nonempty closed sets { }Fn n 1=

∞∞∞∞  with fuzzy diameter zero have nonempty 

intersection. 

Proof: Let (X, e) be the given fuzzy pseudo-2-metric space and suppose that every 

nested sequence of nonempty closed sets { }Fn n 1=

∞∞∞∞
 with fuzzy diameter zero have 

nonempty intersection. 

 We have to prove that (X, e) is complete.  Let {PXn} be a F - Cauchy 

sequence in X.  Take An = {PXn, PXn+1, PXn+2, . . . .} and Fn = An , then we claim that 
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{F n} has fuzzy diameter zero.   Since {PXn} is a F - cauchy sequence, there exists n0 
∈N, such that e(PXn, PXm, q) <∈ for all m, n ≥n0 and for all q∈ IP*(X).  Therefore,  

e(Px, Py, q) <∈                                             (5.1) 

for all Px, Py  and q∈ An0
.  Let  Pu, Pv∈ Fn0

.  Then there exist sequences { }Pu n
 and 

{ }Pv n
in An0

 such that { }Pu n
converges to Pu and { }Pv n

converges to Pv. Hence 

Pu n
∈B(Pu, ∈) and Pv n

∈B(Pv, ∈), for sufficiently large n.  Hence   

e(Pu n
, Pu, P)<∈, e(Pv n

, Pv, P)<∈                                (5.2) 

for all P.  Now, e(Pu, Pv, Px) ≤ e(Pu, Pv, Pz)+e(Pu, Pz, Px) +e(Pz, Pv, Px).  By repeated 
application of axiom (2) in the definition of fuzzy 2-metric space and using (5.1) 
and (5.2). We get, e(Pu, Pv, Px)<∈ for all Pu, Pv, Px ∈ Fn0

.  Thus {Fn} has fuzzy 

diameter zero.  Hence by hypothesis ∩
n= 1

∞∞∞∞
Fn is nonempty.  Take x∈ ∩

n= 1

∞∞∞∞
Fn.  Then for 

∈>0, there exists n1∈N such that e(PXn, PX, P)<∈ for all n≥n1.  Therefore, for each 
∈>0, e(PXn, PX, P) converges to zero as n→∝.  Hence {PXn} converges to PX.  
Therefore, (X, e) is complete.  Conversely, suppose that (X, e) is a complete fuzzy 

pseudo-2-metric space and { }Fn n 1=

∞∞∞∞
 is a nested sequence of nonempty closed sets 

with fuzzy diameter zero.   Let PXn ∈ Fn, n=1, 2, . . . . Since {Fn} has fuzzy 
diameter zero, for ∈>0, there exists n0∈N such that  e(Px, Py, P) <∈, for all Px, Py, 
P∈Fn0

. Therefore, e(PXn, PXm, P)<∈ for all n, m ≥ n0.  Since, PXn ∈ Fn ⊂Fn0
and PXm 

∈ Fm ⊂ Fn0
, {PXn} is a F-cauchy sequence.  But (X,e) is a complete fuzzy metric 

space and hence {PXn} converges to PX.  Now for each fixed n, Px k
∈Fn for all k ≥ 

n.  Therefore, Px∈ Fn  = Fn, for every n, and hence PX ∈ ∩
n= 1

∞∞∞∞
Fn.  Hence the theorem. 

Remark 5.4. The element PX ∈ ∩
n= 1

∞∞∞∞
Fn in the above theorem is unique.  For if there 

are two elements Px, Py ∈ ∩
n= 1

∞∞∞∞
Fn.  Since  { }Fn n 1=

∞∞∞∞
 has fuzzy diameter zero, for each 

fixed ∈ = 1/n>0, e(Px, Py, Pz) <1/n for all Px, Py, Pz ∈Fn and for each  n.  This 
implies e(Px, Py, Pz)→ 0 as n→∝ and hence Px = Py. 

 

Theorem 5.6.  (Baire’s Theorem) Let (X, e) be a complete fuzzy pseudo-2-metric 
space.  Then the intersection of countable number of dense open sets is dense. 

Proof: Let Bo be a nonempty open subset of X and D1, D2, D3, . . . , be dense open 
sets in X.  Since D1 is dense in X, B0 ∩D1, ≠φ.  Let P1 ∈B0∩D1, since B0 ∩D1 is 

open, there exist ∈1>0, such that  B(P1, ∈1) ⊂ B0 ∩D1.  Choose ∈1
1  <∈1 such that 
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B(P1, ∈1
1 )⊂B0∩D1.  Let B1=B(P1, ∈1

1 ) since D2 is dense in IP*(X).  B1∩D2 ≠φ.  Let 

P2 ∈ B1∩D2.  Since B1∩D2 is open, there exist ∈2 >0 such that B(P2, ∈2)⊂B1∩D2.  

Choose ∈2
1 <∈2 such that B(P2, ∈2

1 ) ⊂B1∩D2.   

 Let B2 = B(P2, ∈2
1 ) proceeding similarly by induction. We can find a Pn∈ 

Bn-1 ∩Dn. Since Bn-1∩Dn is open, there exist ∈n>0 such that B(Pn, ∈n)⊂Bn-1∩ Dn. 

Choose ∈n
1 <∈n such that B(Pn, ∈n

1 )⊂ Bn-1∩Dn. Let Bn = B(Pn, ∈n
1 ). Now we claim 

that {Pn} is a F - cauchy sequence. For given ∈>0, choose n0∈N such that for n≥n0 
and m≥n, we have, e(Pm, Pn, P) ≤∈. Thus {Pn} is a F-cauchy sequence. Since (X,e) 

is complete Pn→P for some P in IP*(X). But Px k
∈ B(Pn, ∈n

1 ) for all k≥n and we 

know that every closed ball is a closed set.  Hence, P∈B(Pn, Pn
1 ) ⊂Bn-1∩Dn, for all 

n.  Therefore,  B0 ∩ [ ∩
=n 1

∞
Dn]≠φ.  Hence, ∩

=n 1

∞
Dn is dense in X.  Hence the theorem 

Remark 5.7. A complete fuzzy pseudo-2-metrix cannot be represented as the union 
of a sequence of nowhere dense sets and hence it is not of first category. 

Theorem 5.8. (Uniform Boundedness Principle) Let F be a collection of real 
continuous functions f defined on a complete fuzzy pseudo-2-metric space (X, e) 
and suppose for each Px∈ IP*(X) there exists a real no. K(Px) such that f(Px)≤ K(Px), 
for all f ∈F. Then there exists an open ball S = B(P0, ∈), P0 ∈ IP*(X), ∈ >0 and a 
constant k such that f(Px) ≤k, for all P∈ S, f ∈F. 

Proof: For each f ∈F, and each k∈N, define ξ(k, f) = {Px : f(Px)≤k}. Now f is 
continuous and hence its complement { Px: f(Px)>k} is open. Therefore, ξ(k, f) is 
closed. Define ξk = ∩{ ξ(k, f): f∈F}, ξk being an intersection of closed sets is 
closed.  Now we claim X=∪ { ξk, k = 1, 2, 3, . . . }.  For if Px∈ IP*(X).  Then, f(Px)≤ 
k(Px), for all f ∈F, and hence there exists an integer kPx, such that f(Px) ≤ kPx, for all 
f.  Hence Px∈ ξkPx

. Hence our claim, since (X, e) is a complete fuzzy pseudo-2-

metric space, by cantor’s intersection theorem it is of second category. 

Hence, atleast one of the sets, say ξk, is not nowhere dense.  Therefore, ξ k contain 

an open ball S=B(P0, ∈), P0 ∈ IP* (X). ∈ >0 such that S ⊂ ξ k = ξk.  Therefore, if Px 

∈S, then Px ∈ξk and hence f(Px) ≤ k, for all f ∈ F. Hence the theorem. 
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