Intern. J. Fuzzy Mathematical Archive Vol. 9, No. 1, 2015, 11-15 ISSN: 2320 –3242 (P), 2320 –3250 (online) Published on 8 October 2015 www.researchmathsci.org

International Journal of **Fuzzy Mathematical Archive**

Fuzzy Number Fuzzy Measures and Fuzzy Integrals

 $D.Rajan^1$ and $A.Beulah^2$

¹Department of Mathematics, T.B.M.L College Porayar-609307, Tamil Nadu, India, Email : dan_rajan@rdiffmail.com

²Department of Mathematics, T.B.M.L College Porayar-609307, Tamil Nadu, India, Email : <u>beulahsrk02@gmail.com</u>

Received 2 September 2015; accepted 24 September 2015

Abstract. By using the concepts of fuzzy number fuzzy measures and fuzzy valued functions a theory of fuzzy integrals is investigated. In this paper we have established the fuzzy version of Generalised monotone Convergence theorem and generalised Fatous lemma.

Keywords: Fuzzy number, Fuzzy-valued functions, Fuzzy integral, Fuzzy number fuzzy measure.

AMS Mathematics Subject Classification (2010): 28E10

1. Introduction

In the preceding paper [2], it is introduced that a concept of fuzzy number fuzzy measures, defined the fuzzy integral of a function with respect to a fuzzy number fuzzy measure and shown some properties and generalized convergence theorems. It is well-known that a fuzzy-valued function [3,4] is an extension of a function (point-valued), and the fuzzy integral of fuzzy-valued functions with respect fuzzy measures (point-valued) has been studied [3]; so it is natural to ask whether we can establish a theory about fuzzy integrals of fuzzy valued function with respect to fuzzy number fuzzy measures, the answer is just the paper's purpose. The paper is considered as a subsequent one of our earlier paper is considered as a subsequent one of our earlier work in [2]. In fact, it is also a continued work of [3]. Since what we will discuss in the following is a generalization of works in [2, 3].

Throughout the paper, \mathbb{R}^+ will denote the interval $[0,\infty)$, X is an arbitrary fixed set, $\overline{\mathcal{A}}$ is a fuzzy σ -Algebra [1] formed by the fuzzy-subsets of X,(X, $\overline{\mathcal{A}}$) is a fuzzy Measurable space, $\mu: \overline{\mathcal{A}} \to \mathbb{R}^+$ is a fuzzy measure in Sugeno's sense, $\int_{\overline{\mathcal{A}}} \overline{f} d\mu$ is the resulting fuzzy integral [1].Operation $\in \{+,.,\wedge,v\}$, F(x) is the set of all $\overline{\mathcal{A}}$ - measurable functions from x to \mathbb{R}^+ , $\mathbb{M}(x)$ denotes the set of all fuzzy measures, $\mathbb{I}(\mathbb{R}^+)$ denotes the set of interval-numbers, \mathbb{R}^+ denote the set of fuzzy numbers [2,3], $\overline{F}(x)$ denotes the set of all $\overline{\mathcal{A}}$ -measurable interval-valued functions [3]. $\overline{F}(x)$ denotes the set of all $\overline{\mathcal{A}}$ measurable fuzzy valued functions [3]. $\overline{\mathbb{M}}(x)$ denotes the set of interval number fuzzy measures [2],

D.Rajan and A.Beulah

 $\overline{M}(x)$ denotes the set of fuzzy Number fuzzy Measures [2], we will adopt the preliminaries in [2-4]. Here we omit them for brevity, for more details see [2-4].

2. Preliminaries

Definition 2.1. Let $\overline{f} \in \overline{F}(x)$, $\overline{A} \in \overline{\mathcal{A}}$, $\overline{\mu} \in \overline{M}(x)$. Then the fuzzy integral of \overline{f} and \overline{A} with respect to $\overline{\mu}$ is defined as $\int_{\overline{A}} \overline{f} d\mu = [\int_{\overline{A}} f^{-} d\mu^{-}, \int_{\overline{A}} f^{+} d\mu^{+}]$ where $\overline{f}^{-}(x) = \sup \overline{f}^{-}(x)$ and $\overline{f}^{+}(x) = \sup \overline{f}^{+}(x)$, $\mu^{-}(x) = \inf \mu^{-}(x)$ and $\mu^{+}(x) = \sup \mu^{+}(x)$

Definition: 2.2. Let $\overline{f} \in \overline{F}(x)$, $\overline{A} \in \overline{A}$, $\overline{\mu} \in \overline{M}(x)$. Then the fuzzy integral of \overline{f} and \overline{A} with respect to $\overline{\mu}$ is defined as $\int_{A} \overline{f} d\overline{\mu}(r) = \sup \{\lambda \in (0,1] : r \in \int_{A} \overline{f}_{\overline{A}} d\overline{\mu}_{\overline{A}}\}$ where $\overline{f}_{\overline{A}}(x) = \{r \in (0,1] : \overline{f}(x)(r) > \lambda\}$ and $\overline{\mu}_{\overline{A}}$ is similar.

3. Main results

Theorem 3.1. Let $\overline{f} \in \overline{F}(x)$, $\overline{A} \in \overline{A}$, $\overline{\mu} \in \overline{M}(x)$. Then $\int_{A} \overline{f} - d\overline{\mu} - \epsilon \mathbb{R}^{+}$ and the following equation holds $(\int_{A} \overline{f} d\overline{\mu})_{\lambda} = \int_{A} \overline{f}_{\lambda} d\mu_{\lambda} f \text{ or } \lambda \in (0,1]$ (2.1)

Proof: The condition is sufficient.

To prove that the condition is necessary it is enough to verify equation (2.1) For a fixed $\lambda \in (0,1]$ let $\lambda_n = (1 - 1/n + 1) \lambda$ then $\lambda_n \uparrow \lambda$. It is easy to see that

$$\begin{split} \bar{f}_{\lambda}(x) &= \bigcap_{\lambda i < \lambda} \bar{f}_{\lambda i}(x) \\ &= \bigcap_{n=1}^{\infty} \bar{f}_{\lambda n}(x) \\ &= \lim_{n \to \infty} \bar{f}_{\lambda n}(x) \\ \text{Then we have } \bar{f}_{\lambda n}^{-} \uparrow \bar{f}_{\lambda}^{-}, \bar{f}_{\lambda n}^{+} \uparrow \bar{f}_{\lambda}^{+} \\ \text{Similarly, } \bar{\mu}_{\lambda n}^{-} \uparrow \bar{\mu}_{\lambda}^{-}, \bar{\mu}_{\lambda n}^{+} \uparrow \bar{\mu}_{\lambda}^{+} \\ \text{We have} \\ \int_{A} \bar{f}_{\lambda n}^{-} d\bar{\mu}_{\lambda n}^{-} \uparrow \int_{A} f_{\lambda}^{-} d\bar{\mu}_{\lambda}^{-} \\ \int_{A} \bar{f}_{\lambda n}^{+} d\bar{\mu}_{\lambda n}^{+} \downarrow \int_{A} \bar{f}_{\lambda}^{+} d\bar{\mu}_{\lambda}^{+} \\ \text{Hence} \\ \left(\int_{A} \bar{f} d\bar{\mu}\right)_{\lambda} &= \bigcap_{n=1}^{\infty} \int_{A} \bar{f}_{\lambda n} d\bar{\mu}_{n} \\ &= \lim_{n \to \infty} \int_{A} \bar{f}_{\lambda n} d\bar{\mu}_{n} \\ &= \int_{A} \bar{f}_{\lambda n} d\bar{\mu}_{n} \end{split}$$

Hence the theorem.

Theorem 3.2. Fuzzy integral of fuzzy valued functions with respect to fuzzy number fuzzy measures have the following property, $\bar{f}_1 \leq \bar{f}_2$, $\bar{\mu}_1 \leq \bar{\mu}_2 \Rightarrow \int_A \bar{f}_1 d\bar{\mu}_1 \leq \int_A \bar{f}_2 d\bar{\mu}_2$

Fuzzy Number Fuzzy Measures and Fuzzy Integrals

Proof: $\lambda \in (0,1]$. Let $\lambda_n = (1 - 1/n + 1) \lambda$ then $\lambda_n \uparrow \lambda$. It is easy to see that $\overline{(f_1)}_{\lambda}(x) = \bigcap_{\lambda \neq \lambda} \overline{f_1}_{\lambda \neq \lambda}(x)$ $= \bigcap_{n=1}^{\infty} \overline{f_1}_{\lambda n}(x)$ $= \lim_{n \to \infty} \overline{f_1}_{\lambda n}(x)$

Then we have $(f_1)_{\lambda n} \uparrow (f_1)_{\lambda}$, $(f_1)_{\lambda n} \uparrow (f_1)_{\lambda}^+$ By generalised monotone convergence theorem

$$\begin{split} \int_{\bar{A}} (\bar{f}_{1)\lambda n}^{+} d\bar{\mu}_{1\lambda n}^{+} \uparrow \int_{\bar{A}} \bar{f}_{1\lambda}^{+} d\bar{\mu}_{1\lambda}^{+} \\ \int_{\bar{A}} (\bar{f}_{1)\lambda n}^{-} d\bar{\mu}_{1\lambda n}^{-} \downarrow \int_{\bar{A}} \bar{f}_{1\lambda}^{-} d\bar{\mu}_{1\lambda}^{-} & \text{Hence} \\ \left(\int_{\bar{A}} \bar{f}_{1} d\bar{\mu}_{1} \right)_{\lambda} &= \bigcap_{n=1}^{\infty} \int_{\bar{A}} \bar{f}_{1\lambda n} d\bar{\mu}_{1\lambda n} \\ &= \lim_{n \to \infty} \int_{\bar{A}} \bar{f}_{1\lambda n} d\bar{\mu}_{1\lambda n} \\ &= \int_{\bar{A}} \bar{f}_{1\lambda} d\bar{\mu}_{1\lambda} \\ &= \int_{\bar{A}} \bar{f}_{1\lambda} d\mu_{1} \\ &\leq \int_{\pi} \bar{f}_{1\lambda} d\mu_{2} \end{split}$$

Hence the theorem.

Theorem 3.3. Fuzzy integral of fuzzy valued functions with respect to fuzzy number fuzzy measure $A \subset B \Rightarrow \int_A f \, d\mu \leq \int_B f \, d\mu$ **Proof:** For a fixed $\lambda \in (0,1]$. let $\lambda_n = (1 - 1/n + 1) \lambda$ then $\lambda_n \uparrow \lambda$. It is easy to see that $\bar{f}_{\lambda}(x) = \bigcap_{\lambda i < \lambda} \bar{f}_{\lambda i}(x)$ $= \bigcap_{n=1}^{\infty} \bar{f}_{\lambda n}(x)$ $= \lim_{n \to \infty} \bar{f}_{\lambda n}(x)$ Then we have $\bar{f}_{\lambda n} \uparrow \bar{f}_{\lambda} \uparrow, \bar{f}_{\lambda n}^{+} \uparrow \bar{f}_{\lambda}^{+}$ By generalised monotone convergence theorem $\int_{-\infty} f_{\lambda n} - \frac{1}{2} \int_{-\infty} f_{\lambda n} - \frac{1}$

$$\begin{aligned} \int_{A} f_{\lambda n} \ d\mu_{\lambda n} & \downarrow \int_{A} f_{\lambda} \ d\mu_{\lambda} \\ \int_{A} f_{\lambda n}^{+} d\mu_{\lambda n}^{+} & \downarrow \int_{A} f_{\lambda}^{+} d\mu_{\lambda}^{+} \\ \left(\int_{A} (f d\mu)_{\lambda} &= \bigcap_{n=1}^{\infty} \int_{A} f_{\lambda n} d\mu_{\lambda n} \\ &= \lim_{n \to \infty} \int_{A} f_{\lambda n} d\mu_{\lambda n} \\ &= \int_{A} f_{\lambda} d\mu_{\lambda} \\ &= \int_{A} \bigcup_{\lambda \in (0,1]} \lambda f_{\lambda} d\mu_{\lambda} \\ &= \int_{A} \overline{f} \ d\mu \leq \int_{B} \overline{f} \ d\mu \end{aligned} (A \subset B)$$

Hence the theorem.

4. Convergence theorems

In this section we canvass the convergence of sequences of fuzzy integrals.

D.Rajan and A.Beulah

Theorem 4.1. (Generalised Monotone Convergence theorem) Let $\{\overline{f_n} (n \ge 1), \overline{f}\} \subset \overline{F}(x), \{\mu_n (n \ge 1), \mu\} \subset \overline{M}(x).$ Then (i) $\overline{f_n} \uparrow \overline{f}$ on A, $\overline{\mu}_{\lambda} \uparrow \overline{\mu} = \int_{\overline{a}} \overline{f_{\lambda n}} d\mu_{\lambda n} \downarrow \int_{\overline{a}} \overline{f_{\lambda}} d\mu_{\lambda}$ (3.1)ii) $\overline{f_{\lambda}^{+}} \downarrow \overline{f}^{+}$ on A, $\overline{\mu}_{n}^{+} \downarrow \overline{\mu}^{+} => \int_{\overline{A}} \overline{f_{n}^{+}} d\overline{\mu}_{n}^{-} \downarrow \int_{\overline{A}} \overline{f}^{-+} d\overline{\mu}^{-+}$ (3.2)**Proof:** To prove (i) it is sufficient to verify equation(3.1). For $\lambda_k = (1 - 1/1 + k) \hat{\lambda}$ then

 λ_{k} [†] λ . By the proof of Theorem 2.1 we obtain

 $f_{\hat{\lambda}} = \lim_{n \to \infty} \lim_{k \to \infty} f_{n \, \hat{\lambda} k}$ $\bar{\mu}_{\lambda} = \lim_{n \to \infty} \lim_{k \to \infty} \bar{\mu}_{n,\lambda k}$

$$(\lim_{n \to \infty} \int_{\bar{A}} \bar{f}_n d \,\bar{\mu}_n)_{\lambda k} = \bigcap_{n=1}^{\infty} \lim_{n \to \infty} (\int_{\bar{A}} \bar{f}_n \, d\overline{\mu}_n)_{\lambda k}$$
$$= \lim_{k \to \infty} \lim_{n \to \infty} \int_{\bar{A}} (\bar{f}_n)_{\lambda k} d \, (\bar{\mu}_n)_{\lambda k}$$
$$= \int_{\bar{A}} \lim_{k \to \infty} \lim_{n \to \infty} (\bar{f}_n)_{\lambda k} d \, (\lim_{k \to \infty} \lim_{n \to \infty} (\overline{\mu}_n)_{\lambda k}$$
$$= \int_{\bar{A}} \bar{f}_{\lambda} d \,\bar{\mu}_{\lambda} = \int_{\bar{A}} (\bar{f} d \,\bar{\mu})_{\lambda}$$

This proves (i) and (ii) is similar.

 $\lim \overline{\mu}_n$, $\overline{\mu}_n \in \overline{M}(x)$ then

Theorem 4.2. (Generalised Fatous lemma) Let $\{\overline{f_n} (n \ge 1), \overline{f}\} \subset \overline{F}(x), \{\overline{\mu_n} (n \ge 1), \overline{f_n}\} \subset \overline{F}(x), [\overline{F}(x), \overline{F}(x), \overline{F}(x)] \in \overline{F}(x), \overline$

(i)
$$\int_{A} \underline{\lim} \overline{f_{n}} d\underline{\lim} \overline{\mu_{n}} \leq \underline{\lim} \int_{A} \overline{f} d\overline{\mu_{n}}$$

(ii) $\overline{\lim} \int_{A} \overline{f} d\overline{\mu_{n}} \leq \int_{A} (\overline{\lim} \overline{f_{n}}) d (\overline{\lim} \overline{\mu_{n}})$
(iii) To prove (i) For $\lambda \in (0,1]$ let $\lambda_{n} = (1-1/1+k) \lambda$ th

Proof: To prove (i) For $\lambda \in (0,1]$ let $\lambda_k = (1 - 1/1 + k) \lambda$ then $\lambda_k \uparrow \lambda$. $\overline{F}_k = \lim_{k \to \infty} \lim_{k \to \infty} \int_{-\infty}^{\infty} F_{k-1} dx$

$$\begin{split} f_{\lambda} &= \lim_{k \to \infty} \lim_{n \to \infty} f_{n,\lambda k} \\ \bar{\mu}_{\lambda} &= \lim_{k \to \infty} \lim_{n \to \infty} \bar{\mu}_{n,\lambda k} \text{ then} \\ &(\lim_{n \to \infty} \int_{\bar{A}} \bar{f}_{n} d \, \bar{\mu}_{n})_{\lambda} = \bigcap_{k=1}^{\infty} \lim_{n \to \infty} (\int_{\bar{A}} \bar{f}_{n} d \bar{\mu}_{n})_{\lambda k} \\ &= \int_{\bar{A}} \lim_{k \to \infty} \lim_{n \to \infty} (\bar{f}_{n})_{\lambda k} d \lim_{k \to \infty} \lim_{n \to \infty} (\bar{\mu}_{n})_{\lambda k} \\ &= \int_{\bar{A}} \lim_{k \to \infty} \lim_{n \to \infty} \inf (\bar{f}_{n})_{\lambda k} d \lim_{k \to \infty} \lim_{n \to \infty} \inf (\bar{\mu}_{n})_{\lambda k} \\ &= \int_{\bar{A}} \lim_{k \to \infty} \lim_{n \to \infty} (\underline{\lim} \, \bar{f}_{n})_{\lambda k} d \lim_{k \to \infty} \lim_{n \to \infty} (\bar{\mu}_{n})_{\lambda k} \\ &\leq \underline{\lim} \int_{\bar{A}} \lim_{k \to \infty} \lim_{n \to \infty} (\bar{f}_{n})_{\lambda k} d \lim_{k \to \infty} \lim_{n \to \infty} (\bar{\mu}_{n})_{\lambda k} \end{split}$$

Fuzzy Number Fuzzy Measures and Fuzzy Integrals

$$\leq \underline{\lim} \int_{A} \bigcup_{\lambda \in (0,1]} \lambda(f_{n})_{\lambda} d(\bar{\mu}_{n})_{\lambda}$$

$$= \underline{\lim} \int_{\bar{A}} \bar{f}_{n} d\bar{\mu}_{n}$$
(ii) $(\lim_{n \to \infty} \int_{A} \bar{f}_{n} d\bar{\mu}_{n})_{\lambda} = \bigcap_{k=1}^{\infty} \lim_{n \to \infty} (\int_{A} \bar{f}_{n} d\bar{\mu}_{n})_{\lambda k}$

$$= \lim_{k \to \infty} \lim_{n \to \infty} (\int_{A} \bar{f}_{n} d\bar{\mu}_{n})_{\lambda k}$$

$$= \lim_{k \to \infty} \lim_{n \to \infty} (\sup \int_{A} \bar{f}_{n} d\bar{\mu}_{n})_{\lambda k}$$

$$= \lim_{k \to \infty} \lim_{n \to \infty} (\overline{\lim} \int_{A} \bar{f}_{n} d\bar{\mu}_{n})_{\lambda k}$$

$$\leq \overline{\lim} \int_{A} \lim_{n \to \infty} (\overline{\lim} \int_{A} d\bar{\mu}_{n})_{\lambda}$$

$$\leq \overline{\lim} \int_{A} \lim_{n \to \infty} (\bar{f}_{n})_{\lambda} d(\bar{\mu}_{n})_{\lambda}$$

$$= \int_{A} \overline{\lim} (\bar{f}) d(\overline{\lim} \bar{\mu}_{n})$$

Hence the theorem.

REFERENCES

- 1. Z.Qiao, On fuzzy measure and fuzzy integral on fuzzy sets, *Fuzzy Sets and Systems*, 37 (1990) 77-92.
- 2. C.Zhang and C.Guo, Fuzzy number fuzzy measures and fuzzy integrals (1), *Fuzzy* Sets and Systems, 98 (1998) 355-360.
- 3. D.Zhang and Z.Wang, Fuzzy integrals of fuzzy valued function, *Fuzzy Sets and Systems*, 54 (1993) 63-67.
- 4. D.Zhang and Z.Wang, Fuzzy Measures and integrals, *Fuzzy Systems Math.* 7 (1993) 71-80.