Intern. J. Fuzzy Mathematical Archive Vol. 1, 2013, 37-40 ISSN: 2320–3242 (P), 2320–3250 (online) Published on 31 January 2013 www.researchmathsci.org

International Journal of **Fuzzy Mathematical Archive**

On Fuzzy δg*- Closed Sets in Fuzzy Topological Spaces

K. Sivakamasundari Department of Mathematics Avinashilingam Institute for Home Science and Higher Education for Women University Coimbatore-641043, Tamilnadu, India Email: <u>sivanath2011@gmail.com</u>

Received 6 December 2012; accepted 7 January 2013

Abstract. In this paper a new class of fuzzy sets called fuzzy δg^* -closed sets are introduced and its properties are studied.

AMS Mathematics Subject Classification (2010): 94D05

Keywords: Generalized fuzzy closed sets, fuzzy open sets, fuzzy δg^* - closed sets and fuzzy δg^* -open sets.

1. Introduction

The concept of fuzzy sets was introduced by Zadeh in his classical paper [8]. Thereafter many investigations have been carried out, in the general theoretical field and also in different applied areas, based on this concept. The idea of fuzzy topological space was introduced by Chang[3]. The idea is more or less a generalization of ordinary topological spaces. Different aspects of such spaces have been developed, by several investigators. This paper is also devoted to the development of the theory of fuzzy topological spaces. In [2] the extensions of functions in fuzzy settings were carried out using the concepts of quasicoincidences and q-neighborhoods by Pu and Liu[5]. Dontchev introduced δg -closed sets in [4] and Veera kumar studied g*-closed sets in [6] and [7]. In this paper,these concepts are generalized to fuzzy topological spaces.

2. Preliminary Notes

Throughout this paper, (X,τ) and (Y, σ) (or simply X and Y) always mean fuzzy topological spaces. For a fuzzy set A of (X,τ) , fcl(A) and fint(A) denote the fuzzy closure and fuzzy interior of A respectively. A fuzzy set A is quasi-coincident with a

K. Sivakamasundari

fuzzy set B denoted by AqB iff there exists $x \in X$ such that A(x) + B(x) > 1. If A and B are not quasi-coincident then we write AqB, then $A \leq B$ means Aq1 - B. A

fuzzy point x_p is quasi-coincident with a fuzzy set B denoted by x_pqB iff there exists $x \in X$ such that p + B(x) > 1. A fuzzy set in X is said to be fuzzy regular open [1] if fint(cl A)=A. A fuzzy point x_a is said to be a fuzzy δ -cluster point of a fuzzy set A in an fts X if every fuzzy regular open q-nhd U of x_a is q-coincident with A. The union of all fuzzy δ -cluster points of A is called the fuzzy δ -closure of A is denoted by $\delta cl(A)$. A subset A of a topological space (X, τ) is called a fuzzy g-closed set if fcl(A) =U whenever A ≤ U and U is open in (X, τ) . The complement of a fg-closed set is called a fg-open set. A subset A of a space X is called f δ g-closed if fcl $_{\delta}(A) \le U$ whenever A ≤ U and U is a fuzzy open set.

3. Fuzzy δg^* - closed sets

Definition 3.1. A fuzzy topology is a family τ of fuzzy sets in X which satisfies the following conditions:

1. $0,1 \in \tau$ 2. If A, B $\in \tau$, then A \land B $\in \tau$, 3. If A_i $\in \tau$ for each i \in I, then $\bigvee_{i} A_{i} \in \tau$.

Definition 3.2. A fuzzy set A in fts (X, τ) is called fuzzy δg^* -closed iff $fcl_{\delta}(A) \leq B$, whenever A $\leq B$ and B is fuzzy g-open in X.

Theorem 3.3. Every fuzzy δ -closed set is a fuzzy δg^* -closed set in a fts X.

Proof: Let A be a fuzzy δ -closed set in a fts X. Let B be a fuzzy g-open set in X such that A \leq B. Since A is a fuzzy δ -closed, fcl_{δ}(A) = A. Therefore fcl_{δ}(A) = A \leq B. Hence A is a fuzzy δ g*-closed set.

Theorem 3.4. If A is fuzzy δ -open and fuzzy δg^* -closed in (X, τ) , then A is fuzzy δ -closed in (X, τ)

Proof: Let A be fuzzy δ -open and fuzzy δg^* -closed in X. For $A \leq A$, then $fcl_{\delta}(A) \leq A$. But $A \leq fcl_{\delta}(A)$, which implies $fcl_{\delta}(A) = A$. Hence A is fuzzy δ -closed.

Theorem 3.5. Let (X, τ) be a fts and A be a fuzzy set of X. Then A is fuzzy δg^* closed if and only if A q B implies $f cl_{\delta}(A) q B$ for every fuzzy g-closed set B of X. On Fuzzy δg^* - Closed Sets in Fuzzy Topological Spaces

Proof: Suppose A is a fuzzy δg^* -closed set of X. Let B be a fuzzy g-closed set in X such that A q B. Then $A \le 1 - B$ and 1 - B is a fuzzy g-open set of X. Therefore $fcl_{\delta}(A) \le 1 - B$, as A is fuzzy δg^* -closed. Hence $fcl_{\delta}(A) q B$.

Conversely let D be a fuzzy g-open set in X such that $A \leq D$. Then $A\bar{q}(1-D)$ and 1 - D is a fuzzy g-closed set in X. By hypothesis, $fcl_{\delta}(A)\bar{q}(1-D)$ which implies, $cl_{\delta}(A) \leq D$. Hence A is fuzzy δg^* -closed.

Theorem 3.6. Let A be a fuzzy δg^* -closed set in (X,τ) and x_p be a fuzzy point of (X,τ) such that $x_p qfcl_{\delta}(A)$, then $fcl_{\delta}(x_p)qA$.

Proof: Let A be a fuzzy δg^* -closed set in (X,τ) and x_p be a fuzzy point of (X,τ) such that $x_p qfcl_{\delta}(A)$. Suppose $fcl_{\delta}(x_p)qA$, then $fcl_{\delta}(x_p) \leq 1-A$ and hence $A \leq 1-fcl_{\delta}(x_p)$. Now $1-fcl_{\delta}(x_p)$ is fuzzy δ -open and hence fuzzy open. Moreover, since A is fuzzy δg^* -closed, $fcl_{\delta}(A) \leq 1-fcl_{\delta}(x_p) \leq 1-x_p$. Hence

 $x_p q fcl_{\delta}(A)$, which is a contradiction.

Theorem 3.7. If A is a fuzzy δg^* -closed set in (X,τ) and $A \leq B \leq fcl_{\delta}(A)$, then B is a fuzzy δg^* -closed set in (X,τ) .

Proof: Let A be a fuzzy δg^* -closed set in (X,τ) . Given $A \le B \le fcl_{\delta}(A)$. Let $B \le U$ where U is fuzzy g-open set. Since $A \le B \le U$ and A is a fuzzy δg^* -closed set, we get $fcl_{\delta}(A) \le U.As$ $B \le fcl_{\delta}(A), fcl_{\delta}(B) \le fcl_{\delta}(fcl_{\delta}(A)) = fcl_{\delta}(A)$ we get $fcl_{\delta}(B) \le U$. Hence B is a fuzzy δg^* -closed set in (X,τ) .

Theorem 3.8. If A is a fuzzy δg^* -open set in (X,τ) and fint $_{\delta}(A) \leq B \leq A$, then B is a fuzzy δg^* -open set in (X,τ) .

Proof: Let A be fuzzy δg^* -open set and B be any fuzzy set in X such that $fint_{\delta}(A) \leq B \leq A$. Then 1 - A is a fuzzy δg^* -closed set and $1 - A \leq 1 - B \leq fcl_{\delta}(1 - A)$, as $1 - fint_{\delta}(A) = fcl_{\delta}(1 - A)$. By Theorem 3.7, 1 - B is a fuzzy δg^* -closed. Hence B is fuzzy δg^* -open.

Theorem 3.9. Let (Y, τ_y) be a subspace of a fts (X, τ) and A be a fuzzy set of Y. If A is fuzzy δg^* -closed in X, then A is a fuzzy δg^* -closed in Y.

K. Sivakamasundari

Proof: Let Y be a subspace of X. Given A \leq U, where U is a fuzzy g-open set in Y. We need to prove $fcl_y(A) \leq U$. Since U is fuzzy g-open in Y, we have $U = G \cap Y$ where G is fuzzy g-open in X. Hence $A \leq U = G \cap Y$. Therefore $A \leq G$ and A is fuzzy δg^* -closed in X, we get $fcl(A) \leq G$. Therefore $fcl(A) \cap Y \leq G \cap Y = U$. Hence $fcl_y(A) \leq U$. Therefore A is fuzzy δg^* -closed in Y.

REFERENCES

- A. Bhattacharyya and M. N. Mukherjee, δ_p-Almost compactness for fuzzy topological spaces, *Indian J. Pure Appl. Math.*, 31(5) (2000) 519-531.
- 2. K. K. Azad, On fuzzy semi-continuity, Fuzzy Almost continuity and Fuzzy Weakly continuity, *J.Math. Anal. Appl.*, 82 (1981) 14-32.
- 3. C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968) 182-190.
- J. Dontchev and M. Ganster, On δ generalized closed sets and T_{3/4} spaces, *Mem. Fac. Sci. Kochi Univ. Ser. A Math.*, 17 (1996) 15-31.
- Pao-Ming Pu and Ying-Ming Liu, Fuzzy Topology-I. Neighborhood structure of fuzzy point and Moore-smith convergence, J. Math. Anal. Appl., 6 (1980) 571-599.
- 6. M.K.R.S. Veera Kumar, Between closed sets and g-closed sets, *Mem. Fac. Sci Kochi Univ. Ser A. Math*, 21 (2009) 1-19.
- 7. M.K.R.S. Veera Kumar, Between g*-closed sets and g-closed sets, *Antartica J.Math.* (3) (1) (2006) 43-65.
- 8. L. A. Zadeh, Fuzzy sets, Inform. Contr., 8, 1965, 338-353.