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Abstract. Let D be a minimum secure restrained dominating setgghphG = (V, B). If

V — D contains a restrained dominating Bebf G, thenD' is called an inverse restrained
dominating set with respect . The inverse restrained domination numpg(G) of G

is the minimum cardinality of an inverse restrairdaminating set ofs. The disjoint
restrained domination numbgiy,(G) of G is the minimum cardinality of the union of
two disjoint restrained dominating setsGnWe also consider an invariant the minimum
cardinality of the disjoint union of a dominatingtsand a restrained dominating set. In
this paper, we initiate a study of these parametedsobtain some results on these new
parameters.
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1. Introduction

By a graph, we mean a finite, undirected, withaatpls and multiple edges. L&tbe a
graph with|V|=p vertices andg|=q edges. For all further notation and terminology we
refer the reader to [1, 2].

A setDOV is a dominating set if every vertex Wi — D is adjacent to some
vertex in D. The domination numbey(G) of G is the minimum cardinality of a
dominating set ofz. Recently many new dominating parameters are givédhe books
by Kulli in [2,3,4].

Kulli and Sigarkanti [5] introduced the concept tbk inverse domination as
follows:

Let D be a minimum dominating set . If V — Dcontains a dominating sBt
of G, thenD' is called an inverse dominating set®@fwith respect taD. The inverse
domination numbey *(G) of G is the minimum cardinality of an inverse dominatsey
of G.

Many other inverse domination parameters in doronatheory were studied,
for example, in [6, 7, 8, 9, 10, 11, 12, 13, 14, 15
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A dominating seD in G is a restrained dominating set if the induced sabigfV
— D) has no isolated vertices. Alternately, aBefl V is a restrained dominating set if
every vertex not iD is adjacent to a vertex ID and to a vertex iv — D. This concept
was studied by Domke et al. in [16] and was alsdistl as cototal domination in graphs
by Kulli et al. in [17].

The disjoint domination numbei/(G) of G is the minimum cardinality of the
union of two disjoint dominating sets (. This was introduced by Hedetniemi et al. in
[18]. Many other disjoint domination parameters a@vetudied, for example, in [19, 20,
21, 22, 23, 24, 25].

In this paper, we introduce inverse restrainedidation number and the disjoint
restrained domination number and study their soraptgtheoretical properties.

Let A(G) denote the maximum degree ajnx| (|_xj) the least (greatest) integer
greater (less) than or equalxolhe complement dB is denoted byG .

2. Inverserestrained domination
We introduce the concept of inverse restrained datitn as follows:

Definition 1. Let D be a minimum restrained dominating set of a gi@plV, B). If V —

D contains a restrained dominating §8tof G, thenD'is called an inverse restrained
dominating set with respect B The inverse restrained domination numpexG) of G

is the minimum cardinality of an inverse restraigedninating set of.

Definition 2. The upper inverse restrained domination numbekG) of G is the
maximum cardinality of an inverse restrained dotimaset ofG.

A vy “-set is a minimum inverse restrained dominating set
Example 3. Let K5 be the complete graph. The(Ks) = 1 andy, (Ks)=1.

Remark 4. Not all graphs have an inverse restrained domigatit. For example, the
cycleCs has a restrained dominating set, but no inversteaieed dominating set.

Proposition 5. For any patiP,, y,"'(P,) does not exist.

Proof: Clearly if p<3, theny,(P,) = p. Thusy,(P,) does not exist. Suppoge4 andD is
a restrained dominating set Bf. Let V(P,)={Vvy, Vv, ... ,Vp}. Clearly v;, wOD. Also any
component — Dis with exactly two vertices. We consider theduling two cases.

Case 1. Let ;1D andv,[ID. Let D; OV - D. If v, 0D, thenD; is not a restrained
dominating set oP,,.

Case 2. Letv,, wu,[OD. Let D, OV - D. If v3 O D4, thenvs in not adjacent with,. ThusD,

is not a dominating set &f,. HenceD, is not a restrained dominating sefyf
From the above two cases, we concludeyhgP,) does not exist.
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The following known results are used to provelatgr results.
Proposition A[16]

1) Vi(Kp) = 1 ifp=3 andp = 1.
2) VilKmp =2, if2<m<n.

- Pl .
3) yr(Cp)-p—ZLEJ,lfpza
We obtain the exact values\pf(G) for some standard graphs.

Proposition 6. If K, is a complete graph withe3 vertices, then
-1 —
.y ¥ (K =1 y
Proof: Let D be a minimum restrained dominating seKgf By Proposition A(1),0|=1.
Let D={u}. ThenD,={x} is ay,-set ofK, for xOV(K,) — {u}. Thusy,"(K,) = 1.

Proposition 7. If K., , is a complete bipartite graph witlre2Zn < n, then
-1 —
Y (Km, o) = 2.
Proof: Let V(Kn)=Vi0 V, whereV; = {uy, Uy, ..., U} and V, = {vy, V5, ..., V;}. By
PropositionA(2), D={uy, v} is @ minimum restrained dominating setkyf, , ThenS =
{uy, v} is a y, =set ofK,, ,for up, VoOV(Kim )—{Us, V1 }. Thusy, (K, )= 2.

Proposition 8. If C,is a cycle withp = 3 vertices, then
yr'l(Cp) =p- ZLBJ.
3
Theorem 9. If ay, -set exists in a grap®, then

¥(G) < ¥ (G) 1)
and this bound is sharp.
Proof: Clearly every inverse restrained dominating sed iestrained dominating set.
Thus (1) holds.
The complete graphs,, p = 3, achieve this bound.

Theorem 10. If ays -set exists in a grap® with p vertices, then
V(G) +v " (G) <p
and this bound is sharp.
Proof: This follows from the definition of, (G).
The graplK,, , achieves this bound.

Theorem 11. For any grapl® with ay,*-set and witlp vertices,
YG) +v(G) <p 2
and this bound is sharp.
Proof: By definition,y(G) < y,(G). By Theorem 10y,(G) + Yy, (G) < p. Thus (2) holds.
The graptK,achieves this bound.
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We establish lower and upper boundsol{G).

Theorem 12. For any grapl@ with p vertices and with g *-set,

p . pA(G)
{A(G)+szr (G)S{A(G)+1—" ®)
T p . 1
Proof: It is known that{mlSV(G) and sincey(G) <y, (G), we see that the

lower bound in (3) holds.
By Theorem 11, we have

Y (G) <p-Y(G).

Since[LJ < y(G)and the above inequality,

A(G)+

Thus the upper bound in (3) holds.
The complete grapl; achieves the lower bound.

3. Disjoint restrained domination
The inverse restrained domination number inspigewuntroduce the concept of disjoint
restrained domination number.

Definition 13. The disjoint restrained domination numlyef(G) of a graphG is defined
as follows:yy,(G) = min {|D,|+D,|: D1, D, are disjoint restrained dominating sets3}f
We say that two disjoint restrained dominating ,setsose union has cardinalijyy:(G),
is ayy-pair of G.

Remark 14. Not all graphs have a disjoint restrained domaratiumber. For example,
the cycleCs does not have two disjoint restrained dominateig.s

Theorem 15. If ay, -set exists in a grap® with p vertices, then
2i(G) < V¥ (G) < ¥i(G) + v (G) < p.

We also consider an invariant the minimum cardipaif a disjoint union of a
dominating seD and a restrained dominating §8tand it is denoted byy,(G). We call
such a pair of dominating seB3,(D"), ayy,—pair. Ayy,-pair can be found by lettin' be
any restrained dominating set, and then noting that complementy — D' is a
dominating set. Thug — D'contains a minimal dominating det

Remark 16. Not all graphs have yy;-pair. For example, the cyc(® does not have yy;-
pair.
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Proposition 17. If both yy,-pair andyy;-pair exist, then
W(G) < W:G) < v:v:(G).

Proposition 18. If K, is a complete graph with= 3 vertices, then
2/:(Kp) = Yive(Kp) = W(Kp) = Wi(Kp) = 2.

Proposition 19. For the complete bipartite graply, n, 2< m<n,

(K ) = VYK n) = WK n) =Wi(Kin o) = 4.
Definition 20. A graphG is calledy,y,-minimum if y,y,(G) = 2y(G).
Definition 21. A graphG is calledy,y,-maximum ify,y,(G) = p.

The following classes of graphs grg-minimum.
i) The complete graphs,, p=3, arey,y,--minimum.
i) The complete bipartite graphs, »,, 2< m< n, arey;y,--minimum.

One can see that the gragbris yy,--maximum.

Theorem 22. For each integen = 1, there exists a connected graBhsuch that
¥ (G) —¥(G) = 2n and V(G)I= Y:(G) + " (G).
Proof: Letn= 1. Consider the grap® with 2n+4 vertices as in Figure 1.

(.

Figure 1

ThenD = {uy, vi} is a restrained dominating set@ which is minimum. Thug;(G) = 2.
Sincex;, y; are adjacent is for i = 1, 2,...,n+1, it implies thaD; = V(G) — {uy, vi} is a
restrained dominating set Wi — D. Thereforey,™(G) < |D4| = 2n+2. SinceNg[S] # V(G)
for all proper subsets @& of D, it implies thaty,™(G) = D] = 2h+2. Hencey, (G) —
¥(G) = 2n and also\(G)| =y(G) +y(G).

Theorem 23. For each integem = 1, there exists a connected grdplsuch thaty,(G) +

Vr_l(G) -Y%:(G) = 2n.
Proof: Consider the grapts as in Figure 2 obtained by adding to the corGpaC, 2n
verticesxy, Y1, Xz, ¥z, ..., %, Yo @nd the edgesu;, yiu;, xy;, i = 1,2, ....n,j =1, 2, 3, 4.
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U, u‘.‘

Figure2:

Then {uy, Uy, Us, Ug} is the unique minimum restrained dominating seGiand {v,, vz, Vs,
Va, Vs, Vs, V7, Va} O { X1, Y1, X2, Y2,.+., Xn, Y} IS @Y, -Set inG. Thusy,(G) = 4 andyr‘l(G)=8
+ 2n. Also the Set§)1={ U, Uy, Vs, Ve, V7, Vg} and D2:{ Us, Ug, V1, Vo, V3, V4} constitute N Ye-
pair inG. Hencey,y:(G) = D1|+D-| = 12. Thusi(G) + v, (G) —yiVi(G) = 2.

Corollary 24. The difference(G) + v "(G) — viy(G) can be made arbitrarily large.

Theorem 25. Let G andH be complete graphs such th4{G+H) = 3. Theny,y,(G+H)
=2.
Proof: Let G andH be complete graphs such tM§G+H) = 3. In G + H, each vertex of
G is adjacent to every vertex Bf and vice versa. Thus+H is a complete graph with at
least 3 vertices and hengéG+H)=1 andy, (G+H)=1. Thus

2¥(G+H) = Vivi(G+H) = wi(G + H) + Y (G+H) = 2.

Theorem 26. Let G andH be connected non-complete graphs. The(G+H) =4.

Proof: Let G andH be connected non-complete graphsGls H, each vertex o6 is
adjacent to every vertex ¢f and vice versa. Thus pick(0 G, v O H and choose [
V(G) — {u} andy O V(H) — {v}. Then D = {u, v} and D; = {x, y} are disjoint
yi-sets inG + H. Thusy,(G+H)=2 andy, (G+H)=2. Thus

2y(G+H) = yiy((G+H) = (G + H) +y,(G+H) = 4.

4. Open problems
Many questions are suggested by this research,@them are the following:
Problem 1. Characterize grapt@ for whichy,(G) =y, (G).

Problem 2. Characterize grapt@ for whichy,(G) + v, (G) = p.
Problem 3. Characterize grapt@ for whichy(G) + v, {(G) = p.
14
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Problem 4. Characterize grapts for whichyw:(G) = viv:(G).
Problem 5. When isyy(G) = w:(G)?
Problem 6. Characterize the class@§, -minimum graphs

Problem 7. Characterize the class w¥; -maximum graphs

Problem 8. Obtain bounds fow, , (G) +, y, (G).
Problem 9. What is the complexity of the decision problemresponding te;y:(G) ?

Problem 10. Is DISJOINT RESTRAINED DOMINATION NP-complete far class of
graphs?
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