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Abstract. The topological indices correlate certain physicochemical properties  such as 
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1. Introduction 
In this paper, we consider finite simple undirected graphs. Let G be a graph with a vertex 
set V(G) and an edge set e(G). The degree dG(v) of a vertex v is the number of vertices 
adjacent to v. we refer to [1] for undefined term and notation. 
 A molecular graph is a simple graph such that its vertices correspond to the 
atoms and the edges to the bonds. Chemical graph theory is a branch of mathematical 
chemistry which has an important effect on the development of the chemical sciences. In 
chemical science, the physico-chemical properties of chemical compounds are often 
modeled by means of a molecular graph based structure descriptors, which are referred to 
as topological indices. 
 In [11], Todeshine et al. introduced the first and second multiplicative Zagreb 
indices. These indices are defined as  
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 In [3], Eliasi et.al. introduced a new multiplicative version of the first 
multiplicative Zagreb index as  
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 In [6], Kulli introduced the first and second multiplicative hyper-Zagreb indices 
of a graph. These indices are defined as  
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 In [10], Kulli, Stone, Wang and Wei introduced the general first and second 
multiplicative Zagreb indices. These indices are defined as  
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 Recent development of molecular descriptors may be found in [ 2, 4, 5, 7, 8, 9, 
12, 13, 14]. 
 In this paper, we compute the multiplicative Zagreb index, the multiplicative 
hyper Zagreb indices and general multiplicative Zagreb indices of TUC4C8 [m, n] 
nanotubes and TUC4[m, n] nanotubes. 
 
2. Results for TUSC4C8 (S) nanotubes 
We consider TUSC4C8(S) nanotubes which is a family of nanostructures. These structures 
are made up of cycles C4 and C8. These nanotubes usually symbolized as TUC4C8 [m, n] 
for any m, n ∈ N, in which m is the number of octagons C8 in the first row and n is the 
number of octagons C8 in the first column as depicted in Figure 1 [15]. 
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Figure 1: 
 
 We compute the first multiplicative Zagreb index of TUSC4C8[m, n] nanotubes. 
 
Theorem 2.1. Let G = TUC4C8 [m, n]. Then 

( ) 8 16
1 2 3 .m mnII G = ×  

Proof: Let G = TUC4C8 [m, n] as depicted in Figure 1. By Algebraic method, we get 
|V(G)| = 8mn + 4m. From Figure 1, it is easy to see that there are two partitions of the 
vertex set:  

( ) ( ){ }2 | 2 ,GV v V G d v= ∈ =  2 2 2V m m= +  

( ) ( ){ }3 | 3 ,GV v V G d u= ∈ =  3 8 .V mn=   

We determine II 1(G), we see that  
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 We now compute the general first and second multiplicative Zagreb indices of 
TUC4C8 [m, n] nanotubes. 
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Theorem 2.2. Let G = TUC4C8 [m, n]. Then  
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Proof: Let G = TUC4C8 [m, n]. By algebraic method, we obtain three partitions of the 
edge set of TUC4C8[m, n] nanotubes as follows:  
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a(G), we see that 

( ) ( ) ( )
( )

1

aa
G G

uv E G

MZ G d u d v
∈

=  +  ∏  

 ( ) ( ) ( ) ( ) ( ) ( )
4 5 6

a a a

G G G G G G
uv E uv E uv E

d u d v d u d v d u d v
∈ ∈ ∈

=  +  ×  +  ×  +      ∏ ∏ ∏  

 ( ) ( ) ( )
2 4 12 2

2 2 2 3 3 3
m m mn ma a a −

     = + × + × +
     

[ ]12 22 44 5 6a mn mam am −= × ×  

 
To see the second result, we have 
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 An immediate corollary is the first and second multiplicative Zagreb indices of 
TUC4C8 [m, n] nanotubes. 
 
Corollary 2.3. Let G = TUC4C8 [m, n]. Then  
(1) ( )* 2 4 12 2
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 An immediate another corollary is the first and second multiplicative hyper 
Zagreb indices of TUC4C8[m, n] nanotubes. 
 
Corollary 2.4. Let G = TUC4C8 [m, n]. Then 
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3. Results for TUHRC4(S) nanotubes 
In this section, we focus on the structures of a family of nanostructure which are called 
TUHRC4(S)  nanotubes. These nanotubes usually symbolized as TUC4[m, n] for any m, n 
∈ N, in which m is the number of cycle C4 in the first row and n in the number of cycles 
C4 in the first column as depicted in Figure 2 [15]. 
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Figure 2: 
 

 We compute the first multiplicative Zagreb index of TUC4[m, n] nanotubes. 
 
Theorem 3.1. Let G be the TUC4 [m, n] nanotubes. Then  

( ) 4 4
1 2 6 .m mnII G = ×  

Proof: Let G be the TUC4[m, n] nanotubes as depicted in Figure 2. By algebraic method, 
we get |V(G)| = 2m(n+1). From Figure 2, it is easy to see that there are two partitions of 
the vertex set of G as follows:  

( ) ( ){ }2 | 2 ,GV v V G d v= ∈ =   2 2 .V m=  

( ) ( ){ }4 | 4 ,GV v V G d v= ∈ =   4 2 .V mn=  

 We determine II 1(G), we see that 
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1 2 4 2 4 .

m mn m mnII G = × = ×  

 We now determine the general first and second multiplicative Zagreb indices of 
TUC4 [m, n] nanotubes. 
 
Theorem 3.2. Let G be the TUC4 [m, n] nanotubes. Then 
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Proof: Let G = TUC4[m, n]. By algebraic method, we obtain two partitions of the edge 
set of G as follows: 
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An Immediate corollary is the fist and second multiplicative Zagreb indices of 
TUC4[m, n] nanotubes. 
 
Corollary 3.3. Let G = TUC4 [m, n]. Then  
(1) ( )* 4 4 2

1 6 8 .m mn mII G −= ×  

(2) ( ) 16 4
2 2 .mn mII G +=  

 An Immediate another corollary is the first and second multiplicative hyper 
Zagreb indices of TUC4 [m, n] nanotubes. 
 
Corollary 3.4. Let G = TUC4 [m, n]. Then 

(a) HII 1(G) = 68m × 88mn – 4m. 
(b) HII 2(G) = 22(16mn + 4m). 
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